A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: analysis of chronic toxicity
- PMID: 15667959
- DOI: 10.1016/j.ijrobp.2004.06.001
A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: analysis of chronic toxicity
Abstract
Purpose: To evaluate the validity of the chosen adaptive radiotherapy (ART) dose-volume constraints while testing the hypothesis that toxicity would not be greater at higher tumor dose levels.
Materials and methods: In the ART dose escalation/selection trial, treatment was initiated with a generic planning target volume (PTV) formed as a 1-cm expansion of the clinical target volume (CTV). After the first week of therapy, the patient was replanned with a patient-specific PTV, constructed with CT and electronic portal images obtained in the first 4 days of treatment. A new multileaf collimator beam aperture was used. A minimum dose prescribed to the patient-specific PTV, ranging 70.2-79.2 Gy, was determined on the basis of the following rectal and bladder constraints: <5% of the rectal wall has a dose >82 Gy, <30% of the rectal wall has a dose >75.6 Gy, <50% of the bladder volume has a dose >75.6 Gy, and the maximum bladder dose is 85 Gy. A conformal four-field and/or intensity-modulated radiotherapy (IMRT) technique was used. Independent reviewers scored toxicities. The worst toxicity score seen was used as per the Common Toxicity Criteria grade scale (version 2). We divided the patients into three separate groups: 70.2-72 Gy, >72-75.6 Gy, and >75.6-79.2 Gy. Toxicities in each group were quantified and compared by the Pearson chi-squared test to validate our dose escalation/selection model. Grades 0, 1, 2, and 3 were censored as none vs. each category and none vs. any.
Results: We analyzed patients with follow-up greater than 1 year. The mean duration of follow-up was 29 months (range, 12-46 months). We report on 280 patients, mean age 72 years (range, 51-87 years). Only 60 patients received adjuvant hormones. Mean pretreatment prostate-specific antigen level was 9.3 ng/mL (range, 0.6-120 ng/mL). Mean Gleason score was 6 (range, 3-9). The lowest dose level was given to 49 patients, the intermediate dose to 131 patients, and 100 patients received the highest dose escalation. One hundred eighty-one patients (65%) were treated to a prostate field only and 99 patients (35%) to prostate and seminal vesicles. Chronic genitourinary and/or gastrointestinal categories were incontinence, persistent urinary retention, increased urinary frequency/urgency, urethral stricture, hematuria, diarrhea, rectal pain, bleeding, ulcer, fistula, incontinence, and proctitis. Toxicity at the high dose level was not different from toxicity at the intermediate or lower dose levels. No significant difference was observed in any of the individual toxicity categories.
Conclusions: By applying the ART process--namely, developing a patient-specific PTV--to prostate cancer patients, significant dose escalation can be achieved without increases in genitourinary or gastrointestinal toxicity. Our data validate the rectal and bladder dose-volume constraints chosen for our three-dimensional conformal and IMRT prostrate radiotherapy planning.
Similar articles
-
Phase II dose escalation study of image-guided adaptive radiotherapy for prostate cancer: use of dose-volume constraints to achieve rectal isotoxicity.Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):141-9. doi: 10.1016/j.ijrobp.2004.12.017. Int J Radiat Oncol Biol Phys. 2005. PMID: 16111582 Clinical Trial.
-
Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy.Int J Radiat Oncol Biol Phys. 2005 Aug 1;62(5):1297-308. doi: 10.1016/j.ijrobp.2004.12.052. Int J Radiat Oncol Biol Phys. 2005. PMID: 16029785 Review.
-
Toxicity after three-dimensional radiotherapy for prostate cancer on RTOG 9406 dose Level V.Int J Radiat Oncol Biol Phys. 2005 Jul 1;62(3):706-13. doi: 10.1016/j.ijrobp.2004.11.028. Int J Radiat Oncol Biol Phys. 2005. PMID: 15936549 Clinical Trial.
-
Toxicity after three-dimensional radiotherapy for prostate cancer with RTOG 9406 dose level IV.Int J Radiat Oncol Biol Phys. 2004 Mar 1;58(3):735-42. doi: 10.1016/S0360-3016(03)01578-5. Int J Radiat Oncol Biol Phys. 2004. PMID: 14967428 Clinical Trial.
-
Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients.Int J Radiat Oncol Biol Phys. 2004 Nov 1;60(3):777-87. doi: 10.1016/j.ijrobp.2004.04.017. Int J Radiat Oncol Biol Phys. 2004. PMID: 15465194 Review.
Cited by
-
Adaptive Radiotherapy: Moving Into the Future.Semin Radiat Oncol. 2019 Jul;29(3):181-184. doi: 10.1016/j.semradonc.2019.02.011. Semin Radiat Oncol. 2019. PMID: 31027635 Free PMC article. No abstract available.
-
Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity?Radiat Oncol. 2007 Jan 15;2:6. doi: 10.1186/1748-717X-2-6. Radiat Oncol. 2007. PMID: 17224072 Free PMC article.
-
Influence of air mapping errors on the dosimetric accuracy of prostate CBCT-guided online adaptive radiation therapy.J Appl Clin Med Phys. 2023 Oct;24(10):e14057. doi: 10.1002/acm2.14057. Epub 2023 Jun 5. J Appl Clin Med Phys. 2023. PMID: 37276082 Free PMC article.
-
Performance evaluation of automatic anatomy segmentation algorithm on repeat or four-dimensional computed tomography images using deformable image registration method.Int J Radiat Oncol Biol Phys. 2008 Sep 1;72(1):210-9. doi: 10.1016/j.ijrobp.2008.05.008. Int J Radiat Oncol Biol Phys. 2008. PMID: 18722272 Free PMC article.
-
Quantitative evaluation of cone-beam computed tomography in target volume definition for offline image-guided radiation therapy of prostate cancer.Radiother Oncol. 2010 Jan;94(1):71-5. doi: 10.1016/j.radonc.2009.10.005. Epub 2009 Nov 10. Radiother Oncol. 2010. PMID: 19897268 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical