Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;115(4):319-25.
doi: 10.1016/j.thromres.2004.09.011.

Activated protein C, a natural anticoagulant protein, has antioxidant properties and inhibits lipid peroxidation and advanced glycation end products formation

Affiliations

Activated protein C, a natural anticoagulant protein, has antioxidant properties and inhibits lipid peroxidation and advanced glycation end products formation

Kazuyo Yamaji et al. Thromb Res. 2005.

Abstract

Introduction: Activated protein C (APC) is an important natural anticoagulant that is proteolytically generated from protein C (PC) by the modulation of thrombin activity in the presence of thrombomodulin on an endothelial surface. Recent studies have demonstrated that, beyond its anticoagulant acitivities, APC had anti-inflammatory and cytoprotective properties. The mechanisms underlying APC's anti-inflammatory effects remain unknown. Our goal was to elucidate and confirm these mechanisms.

Methods: We first examined the effect of APC on reactive oxygen species (ROS) and inflammatory cytokine production in murine macrophage-like RAW264.7 cells. We further examined the effect of APC on chemically induced lipid peroxidation and advanced glycation end-products (AGE) formation.

Results and conclusions: APC in the range of 10-50 microg/mL could reduce lipopolysaccharide (LPS)-induced ROS generation, nuclear factor kappaB (NF-kappaB) activation and resultant proinflammatory cytokine production. Additional cell-free experiments revealed that APC (10-50 microg/mL) had inhibitory effects on lipid peroxidation and AGE formation. These findings suggest that APC, via its intrinsic anti-oxidant properties, may, in settings of oxidant stress, exert important cytoprotective and anti-inflammatory effects that are distinct from its anticoagulant activity as an antioxidant protein. If that is true, APC may contribute to ROS-related chronic disorders including atherosclerosis and diabetes as well as acute shock conditions.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources