Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 8;111(5):633-42.
doi: 10.1161/01.CIR.0000154607.90506.45. Epub 2005 Jan 24.

Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates

Affiliations

Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates

Andrew S Weyrich et al. Circulation. .

Abstract

Background: Drugs that simultaneously decrease platelet function and inflammation may improve the treatment of cardiovascular disorders. Here, we determined whether dipyridamole and aspirin, a combination therapy used to prevent recurrent stroke, regulates gene expression in platelet-monocyte inflammatory model systems.

Methods and results: Human platelets and monocytes were pretreated with dipyridamole, aspirin, or both inhibitors. The cells were stimulated with thrombin or activated by adhesion to collagen, and gene expression was measured in the target monocytes. Thrombin-stimulated platelets increased monocyte chemotactic protein-1 (MCP-1) expression by monocytes. Dipyridamole but not aspirin attenuated nuclear translocation of NF-kappaB and blocked the synthesis of MCP-1 at the transcriptional level. Dipyridamole delayed maximal synthesis of interleukin-8 but did not alter cyclooxygenase-2 accumulation. Adherence to collagen and platelets also increased the expression of matrix metalloproteinase-9 (MMP-9) in monocytes, a response that was inhibited by dipyridamole. In this case, however, dipyridamole did not block transcription or distribution of MMP-9 mRNA to actively translating polysomes, indicating that it regulates the expression of MMP-9 protein at a postinitiation stage of translation. Dipyridamole also blocked MCP-1 and MMP-9 generated by lipopolysaccharide-treated monocytes, indicating that at least part of its inhibitory action is unrelated to its antiplatelet properties.

Conclusions: These results indicate that dipyridamole has selective antiinflammatory properties that may contribute to its actions in the secondary prevention of stroke.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms