Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;12(3):259-71.
doi: 10.1038/sj.gt.3302407.

Ex vivo generation of genetically modified dendritic cells for immunotherapy: implications of lymphocyte contamination

Affiliations

Ex vivo generation of genetically modified dendritic cells for immunotherapy: implications of lymphocyte contamination

N Chinnasamy et al. Gene Ther. 2005 Feb.

Abstract

Genetically modified dendritic cell (DC) vaccines expressing tumor-associated antigens are currently used for cancer immunotherapy. Peripheral blood (PB) monocyte precursors are a relatively convenient source of DCs for use in clinical studies, but are often contaminated by lymphocytes. The current study was conducted to examine the impact of T-lymphocyte contamination on genetically modified DC product. PB monocyte-derived DCs were efficiently transduced (75-95%) with an HIV-1-based self-inactivating lentiviral vector encoding a model antigen, the enhanced green fluorescent protein (eGFP). The lymphocyte-free DC culture transduced with Lenti-eGFP showed stable expression of eGFP without measurable decline in viability. In contrast, the eGFP-positive DCs disappeared rapidly in transduced DC cultures containing lymphocyte contaminants, concurrent with detectable activation and expansion of T-lymphocytes. Upon antigen recall, these T cells elicited major histocompatability complex-restricted antigen-specific cytotoxicity against eGFP-positive autologous DCs and mitogen-stimulated T lymphoblasts, mainly through the perforin-mediated pathway. In summary, this study demonstrate that the relative purity of DC cultures could determine the persistence of gene-modified DC, which may affect the induction of effective immune responses by DC vaccination strategies.

PubMed Disclaimer