Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar-Apr;45(2-3):150-61.
doi: 10.1002/em.20110.

Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens

Affiliations
Review

Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens

Takehiko Nohmi et al. Environ Mol Mutagen. 2005 Mar-Apr.

Abstract

Cellular DNA is exposed to a variety of exogenous and endogenous mutagens. A complete understanding of the importance of different types of DNA damage requires knowledge of the specific molecular alterations induced by different types of agents in specific target tissues in vivo. The gpt delta transgenic mouse model provides the opportunity to characterize tissue-specific DNA alterations because small and large deletions as well as base substitutions can be analyzed. Here, we summarize the characteristics of intrachromosomal deletions and base substitutions induced by ionizing radiation in liver and spleen, ultraviolet B (UVB) radiation in epidermis, mitomycin C (MMC) in bone marrow, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in colon, and aminophenylnorharman (APNH) in liver of gpt delta mice. Carbon-ion radiation, UVB, and MMC induced large deletions of more than 1 kb. About half of the large deletions occurred between short direct-repeat sequences and the remainder had flush ends, suggesting the involvement of nonhomologous end joining of double-stranded breaks (DSBs) in DNA. UV photoproducts and interstrand crosslinks by MMC may block DNA replication, thereby inducing DSBs. In contrast, PhIP and APNH mainly generated 1 bp deletions in runs of guanine bases. As for base substitutions, UVB and MMC induced G:C-->A:T transitions at dipyrimidine sites and tandem base substitutions at GG sites, respectively. PhIP and APNH induced G:C-->T:A transversions. Translesion DNA synthesis across the lesions, i.e., UV photoproducts, intrastrand crosslinks by MMC, and guanine adducts by the heterocyclic amines, may be involved in the induction of base substitutions. These results indicate the importance of sequence information to elucidate the mechanisms underlying deletions and base substitutions induced in vivo by environmental mutagens.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources