Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar 1;79(5):652-60.
doi: 10.1002/jnr.20388.

Growth-associated protein-43 is degraded via the ubiquitin-proteasome system

Affiliations
Comparative Study

Growth-associated protein-43 is degraded via the ubiquitin-proteasome system

K L De Moliner et al. J Neurosci Res. .

Abstract

Growth-associated protein-43 (GAP-43) is a phosphoprotein whose expression in neurons is related to the initial establishment and remodeling of neural connections. GAP-43 gene expression is known to be regulated at both the transcriptional and the postranscriptional levels. However, very little is known about the cellular mechanism involved in the degradation of this protein. Ubiquitin (Ub) is well known for its role in targeting cytoplasmic proteins for degradation by the 26S proteasome. The ubiquitin-proteasome system (UPS) consists of a conserved cascade of three enzymatic components that attach Ub covalently to various substrates and control the degradation of protein involved in several important cellular processes. In this study, we investigated the degradation of GAP-43 in transfected NIH 3T3 cells and neuronal cultures. We found that the proteasome inhibitors, lactacystin and MG132 increased the cellular GAP-43 level, leading to the accumulation of polyubiquitinated forms of this protein in transfected cells and that the Ub-proteasome pathway is also involved in the turnover of this protein in neurons. We conclude based on our findings that GAP-43 is a substrate of the UPS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources