Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;17(1):123-32.
doi: 10.1111/j.1365-2982.2004.00612.x.

Ileal myenteric plexus in aged guinea-pigs: loss of structure and calretinin-immunoreactive neurones

Affiliations

Ileal myenteric plexus in aged guinea-pigs: loss of structure and calretinin-immunoreactive neurones

Raquel Abalo et al. Neurogastroenterol Motil. 2005 Feb.

Abstract

Myenteric plexus controls gastrointestinal motility by means of well organized circuits which are comprised of sensory neurones, interneurones and motor neurones to the muscular layers. Calretinin (CR) is a calcium-binding protein that, in guinea-pig ileum, has only been found in ascending interneurones, which also express neurofilament triplet proteins (NFT), and excitatory longitudinal muscle motor neurones, which do not. In spite of some evidence that age affects both function and structure of the myenteric plexus, little is known about the possible selectivity of the process regarding specific myenteric neuronal phenotypes. The influence of age on both the structure of the myenteric plexus and the presence of CR-immunoreactive (CR-IR) neurones was studied using conventional immunohistochemical procedures applied to ileal whole-mount preparations from guinea-pigs. Both a reduction in ganglionic size and changes in the distribution of neurones inside and outside the ganglia, together with a general neuronal loss were found in preparations from aged guinea-pigs. More interestingly, a relatively more pronounced age-related loss of CR-IR neurones, especially those lacking of NFT expression, was found. Specific myenteric neuronal phenotypes may show differential sensitivity to ageing, and this could, under certain circumstances, alter the functional balance of gastrointestinal motility in aged individuals.

PubMed Disclaimer

Publication types

LinkOut - more resources