Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;234(2):431-7.
doi: 10.1148/radiol.2342030889.

Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model

Affiliations

Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model

Esther L Yuh et al. Radiology. 2005 Feb.

Abstract

Purpose: To quantitatively determine the delivery of systemic liposomal doxorubicin to tumors treated with pulsed high-intensity focused ultrasound and to study the mechanism underlying this delivery in a murine model.

Materials and methods: All animal work was performed in compliance with guidelines and approval of institutional animal care committee. C3H mice received subcutaneous injections in the flank of a cell suspension of SCC7, a murine squamous cell carcinoma cell line; mice (n = 32) in drug delivery study received unilateral injections, whereas mice (n = 10) in mechanistic study received bilateral injections. Tumors were treated when they reached 1 cm(3) in volume. In the drug delivery study, doxorubicin hydrochloride liposomes were injected into the tail vein: Mice received therapy with doxorubicin injections and high-intensity focused ultrasound, doxorubicin injections alone, or neither form of therapy (controls). Tumors were removed, and the doxorubicin content was assayed with fluorescent spectrophotometry. In the mechanistic study, all mice received an injection of 500-kDa dextran-fluorescein isothyocyanate into the tail vein, and half of them were exposed to high-intensity focused ultrasound prior to injection. Contralateral tumors served as controls for each group. Extravasation of dextran-fluorescein isothyocyanate was observed by using in vivo confocal microscopy.

Results: Mean doxorubicin concentration in tumors treated with pulsed high-intensity focused ultrasound was 9.4 microg . g(-1) +/- 2.1 (standard deviation), and it was significantly higher (124% [9.4 microg . g(-1)/4.2 microg . g(-1)]) than in those that were not treated with high-intensity focused ultrasound (4.2 microg . g(-1) +/- 0.95) (P < .001, unpaired two-tailed Student t test). Extravasation of dextran-fluorescein isothyocyanate was observed in the vasculature of tumors treated with high-intensity focused ultrasound but not in that of untreated tumors.

Conclusion: Pulsed high-intensity focused ultrasound is an effective method of targeting systemic drug delivery to tumor tissue. Potential mechanisms for producing the observed enhancement are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources