Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 Feb;184(2):439-44.
doi: 10.2214/ajr.184.2.01840439.

Impact of breast density on computer-aided detection for breast cancer

Affiliations
Clinical Trial

Impact of breast density on computer-aided detection for breast cancer

Rachel F Brem et al. AJR Am J Roentgenol. 2005 Feb.

Erratum in

  • AJR Am J Roentgenol. 2005 Jun;184(6):1968

Abstract

Objective: Our aim was to determine whether breast density affects the performance of a computer-aided detection (CAD) system for the detection of breast cancer.

Materials and methods: Nine hundred six sequential mammographically detected breast cancers and 147 normal screening mammograms from 18 facilities were classified by mammographic density. BI-RADS 1 and 2 density cases were classified as nondense breasts; BI-RADS 3 and 4 density cases were classified as dense breasts. Cancers were classified as either masses or microcalcifications. All mammograms from the cancer and normal cases were evaluated by the CAD system. The sensitivity and false-positive rates from CAD in dense and nondense breasts were evaluated and compared.

Results: Overall, 809 (89%) of 906 cancer cases were detected by CAD; 455/505 (90%) cancers in nondense breasts and 354/401 (88%) cancers in dense breasts were detected. CAD sensitivity was not affected by breast density (p=0.38). Across both breast density categories, 280/296 (95%) microcalcification cases and 529/610 (87%) mass cases were detected. One hundred fourteen (93%) of the 122 microcalcifications in nondense breasts and 166 (95%) of 174 microcalcifications in dense breasts were detected, showing that CAD sensitivity to microcalcifications is not dependent on breast density (p=0.46). Three hundred forty-one (89%) of 383 masses in nondense breasts, and 188 (83%) of 227 masses in dense breasts were detected-that is, CAD sensitivity to masses is affected by breast density (p=0.03). There were more false-positive marks on dense versus nondense mammograms (p=0.04).

Conclusion: Breast density does not impact overall CAD detection of breast cancer. There is no statistically significant difference in breast cancer detection in dense and nondense breasts. However, the detection of breast cancer manifesting as masses is impacted by breast density. The false-positive rate is lower in nondense versus dense breasts. CAD may be particularly advantageous in patients with dense breasts, in which mammography is most challenging.

PubMed Disclaimer

LinkOut - more resources