Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jan;282(1):18-37.
doi: 10.1002/ar.b.20050.

Secretion without membrane fusion: porocytosis

Affiliations
Free article
Review

Secretion without membrane fusion: porocytosis

Robert B Silver et al. Anat Rec B New Anat. 2005 Jan.
Free article

Abstract

We have recently proposed a mechanism to describe secretion, a fundamental process in all cells. That hypothesis, called porocytosis, embodies all available data and encompasses both forms of secretion, i.e., vesicular and constitutive. The current accepted view of exocytotic secretion involves the physical fusion of vesicle and plasma membranes; however, that hypothesized mechanism does not fit all available physiological data. Energetics of apposed lipid bilayers do not favor unfacilitated fusion. We consider that calcium ions (e.g., 10(-4) to 10(-3) M calcium in microdomains when elevated for 1 ms or less), whose mobility is restricted in space and time, establish salt bridges among adjacent lipid molecules. This establishes transient pores that span both the vesicle and plasma membrane lipid bilayers; the diameter of this transient pore would be approximately 1 nm (the diameter of a single lipid molecule). The lifetime of the transient pore is completely dependent on the duration of sufficient calcium ion levels. This places the porocytosis hypothesis for secretion squarely in the realm of the physical and physical chemical interactions of calcium and phospholipids and places mass action as the driving force for release of secretory material. The porocytosis hypothesis that we propose satisfies all of the observations and provides a framework to integrate our combined knowledge of vesicular and constitutive secretion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources