Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;73(1):186-93.
doi: 10.1002/jbm.b.30195.

Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact

Affiliations

Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact

Yu Zhang et al. J Biomed Mater Res B Appl Biomater. 2005 Apr.

Abstract

A study is made of fracture from cyclic loading of WC spheres on the top surfaces of thick (1 mm) brittle layers on polymeric substrates, as representative of repetitive occlusal contact on dental crown structures. The advantage of glass layers is that internal cracks can be followed in situ during the entire cyclic loading process. The glass surfaces are first given a surface-abrasion treatment to control the flaw state, such that the strengths match those of dental porcelains. Cyclic contact tests are carried out at prescribed maximum loads and frequencies, in water. In addition to conventional cone cracks that form outside the contact circle, additional, inner cone cracks form within the contact in the water environment. These inner cones are observed only in cyclic loading in water and are accelerated at higher frequencies, indicating a strong mechanical driving force. They tend to initiate after the outer cones, but subsequently catch up and penetrate much more rapidly and deeply, ultimately intersecting the underlying coating/substrate interface. Comparative tests on glass/polymer bilayers versus monolithic glass, in cyclic versus static loading, in water versus air environment, on abraded versus etched surfaces, and with glass instead of WC indenters, confirm the existence of a dominant mechanical element in the inner-cone crack evolution. It is suggested that the source of the mechanical driving force is hydraulic pressure from intrusion and entrapment of liquid in surface fissures at the closing contact interface. This new type of cone cracking may limit dental crown veneer lifetimes under occlusal fatigue conditions, especially in thicker layers, where competing modes-such as undersurface radial cracks-are suppressed.

PubMed Disclaimer

Publication types