Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Nov 11;1694(1-3):IN1-9.

Sorting of lipoproteins to the outer membrane in E. coli

Affiliations
  • PMID: 15672528
Review

Sorting of lipoproteins to the outer membrane in E. coli

Hajime Tokuda et al. Biochim Biophys Acta. .

Abstract

Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources