A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation
- PMID: 15673712
- PMCID: PMC548333
- DOI: 10.1093/nar/gkh983
A statistical analysis of RNA folding algorithms through thermodynamic parameter perturbation
Abstract
Computational RNA secondary structure prediction is rather well established. However, such prediction algorithms always depend on a large number of experimentally measured parameters. Here, we study how sensitive structure prediction algorithms are to changes in these parameters. We found already that for changes corresponding to the actual experimental error to which these parameters have been determined, 30% of the structure are falsely predicted whereas the ground state structure is preserved under parameter perturbation in only 5% of all the cases. We establish that base-pairing probabilities calculated in a thermal ensemble are viable although not a perfect measure for the reliability of the prediction of individual structure elements. Here, a new measure of stability using parameter perturbation is proposed, and its limitations are discussed.
Figures



Similar articles
-
Revolutions in RNA secondary structure prediction.J Mol Biol. 2006 Jun 9;359(3):526-32. doi: 10.1016/j.jmb.2006.01.067. Epub 2006 Feb 6. J Mol Biol. 2006. PMID: 16500677 Review.
-
Partition function and base pairing probabilities for RNA-RNA interaction prediction.Bioinformatics. 2009 Oct 15;25(20):2646-54. doi: 10.1093/bioinformatics/btp481. Epub 2009 Aug 11. Bioinformatics. 2009. PMID: 19671692
-
Extracting stacking interaction parameters for RNA from the data set of native structures.J Mol Biol. 2005 Mar 18;347(1):53-69. doi: 10.1016/j.jmb.2004.12.012. Epub 2005 Jan 12. J Mol Biol. 2005. PMID: 15733917
-
Thermodynamic characterization of single mismatches found in naturally occurring RNA.Biochemistry. 2007 Nov 20;46(46):13425-36. doi: 10.1021/bi701311c. Epub 2007 Oct 24. Biochemistry. 2007. PMID: 17958380
-
How RNA folds.J Mol Biol. 1999 Oct 22;293(2):271-81. doi: 10.1006/jmbi.1999.3001. J Mol Biol. 1999. PMID: 10550208 Review.
Cited by
-
Predicting RNA secondary structures with pseudoknots by MCMC sampling.J Math Biol. 2008 Jan;56(1-2):161-81. doi: 10.1007/s00285-007-0106-6. Epub 2007 Jun 23. J Math Biol. 2008. PMID: 17589847
-
Describing the structural robustness landscape of bacterial small RNAs.BMC Evol Biol. 2012 Apr 13;12:52. doi: 10.1186/1471-2148-12-52. BMC Evol Biol. 2012. PMID: 22500888 Free PMC article.
-
Conflicting selection pressures on synonymous codon use in yeast suggest selection on mRNA secondary structures.BMC Evol Biol. 2008 Jul 31;8:224. doi: 10.1186/1471-2148-8-224. BMC Evol Biol. 2008. PMID: 18671878 Free PMC article.
-
Computational prediction of efficient splice sites for trans-splicing ribozymes.RNA. 2012 Mar;18(3):590-602. doi: 10.1261/rna.029884.111. Epub 2012 Jan 24. RNA. 2012. PMID: 22274956 Free PMC article.
-
Accurate and efficient reconstruction of deep phylogenies from structured RNAs.Nucleic Acids Res. 2009 Oct;37(18):6184-93. doi: 10.1093/nar/gkp600. Epub 2009 Sep 1. Nucleic Acids Res. 2009. PMID: 19723687 Free PMC article.
References
-
- Couzin J. Small RNAs make big splash. Science. 2002;298:2296–2297. - PubMed
-
- Gilbert W. Origin of life: the RNA world. Nature. 1986;319:618.
-
- Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M., Schuster P. Fast folding and comparison of RNA secondary structure. Monatsh. Chem. 1994;125:167.
-
- de Gennes P.G. Statistics of branching and hairpin helixes for dAT copolymer. Biopolymers. 1968;6:715–729. - PubMed