Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;183(2):161-9.
doi: 10.1111/j.1365-201X.2004.01378.x.

Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca+ influx

Affiliations

Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca+ influx

C R W Kuhlmann et al. Acta Physiol Scand. 2005 Feb.

Abstract

Aims: Endothelin-1 (ET-1) promotes endothelial cell growth. Endothelial cell proliferation involves the activation of Ca2+-activated K+ channels. In this study, we investigated whether Ca2+-activated K+ channels with big conductance (BK(Ca)) contribute to endothelial cell proliferation induced by ET-1.

Methods: The patch-clamp technique was used to analyse BK(Ca) activity in endothelial cells derived from human umbilical cord veins (HUVEC). Endothelial proliferation was examined using cell counts and measuring [3H]-thymidine incorporation. Changes of intracellular Ca2+ levels were examined using fura-2 fluorescence imaging.

Results: Characteristic BK(Ca) were identified in cultured HUVEC. Continuous perfusion of HUVEC with 10 nmol L(-1) ET-1 caused a significant increase of BK(Ca) open-state probability (n = 14; P < 0.05; cell-attached patches). The ET(B)-receptor antagonist (BQ-788, 1 micromol L(-1)) blocked this effect. Stimulation with Et-1 (10 nmol L(-1)) significantly increased cell growth by 69% (n = 12; P < 0.05). In contrast, the combination of ET-1 (10 nmol L(-1)) and the highly specific BK(Ca) blocker iberiotoxin (IBX; 100 nmol L(-1)) did not cause a significant increase in endothelial cell growth. Ca2+ dependency of ET-1-induced proliferation was tested using the intracellular Ca2+-chelator BAPTA (10 micromol L(-1)). BAPTA abolished ET-1 induced proliferation (n = 12; P < 0.01). In addition, ET-1-induced HUVEC growth was significantly reduced, if cells were kept in a Ca2+-reduced solution (0.3 mmol L(-1)), or by the application of 2 aminoethoxdiphenyl borate (100 micromol L(-1)) which blocks hyperpolarization-induced Ca2+ entry (n = 12; P < 0.05).

Conclusion: Activation of BK(Ca) by ET-1 requires ET(B)-receptor activation and induces a capacitative Ca2+ influx which plays an important role in ET-1-mediated endothelial cell proliferation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources