Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;54(2):462-71.
doi: 10.2337/diabetes.54.2.462.

Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion

Affiliations

Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion

Laura Herrero et al. Diabetes. 2005 Feb.

Abstract

Carnitine palmitoyltransferase I, which is expressed in the pancreas as the liver isoform (LCPTI), catalyzes the rate-limiting step in the transport of fatty acids into the mitochondria for their oxidation. Malonyl-CoA derived from glucose metabolism regulates fatty acid oxidation by inhibiting LCPTI. To examine directly whether the availability of long-chain fatty acyl-CoA (LC-CoA) affects the regulation of insulin secretion in the beta-cell and whether malonyl-CoA may act as a metabolic coupling factor in the beta-cell, we infected INS(832/13) cells and rat islets with an adenovirus encoding a mutant form of LCPTI (Ad-LCPTI M593S) that is insensitive to malonyl-CoA. In Ad-LCPTI M593S-infected INS(832/13) cells, LCPTI activity increased sixfold. This was associated with enhanced fatty acid oxidation, at any glucose concentration, and a 60% suppression of glucose-stimulated insulin secretion (GSIS). In isolated rat islets in which LCPTI M593S was overexpressed, GSIS decreased 40%. The impairment of GSIS in Ad-LCPTI M593S-infected INS(832/13) cells was not recovered when cells were incubated with 0.25 mmol/l palmitate, indicating the deep metabolic influence of a nonregulated fatty acid oxidation system. At high glucose concentration, overexpression of a malonyl-CoA-insensitive form of LCPTI reduced partitioning of exogenous palmitate into lipid esterification products and decreased protein kinase C activation. Moreover, LCPTI M593S expression impaired K(ATP) channel-independent GSIS in INS(832/13) cells. The LCPTI M593S mutant caused more pronounced alterations in GSIS and lipid partitioning (fat oxidation, esterification, and the level of nonesterified palmitate) than LCPTI wt in INS(832/13) cells that were transduced with these constructs. The results provide direct support for the hypothesis that the malonyl-CoA/CPTI interaction is a component of a metabolic signaling network that controls insulin secretion.

PubMed Disclaimer

Similar articles

Cited by

Publication types