Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;288(6):R1571-80.
doi: 10.1152/ajpregu.00788.2004. Epub 2005 Jan 27.

Time-dependent modulation of carotid body afferent activity during and after intermittent hypoxia

Affiliations
Free article

Time-dependent modulation of carotid body afferent activity during and after intermittent hypoxia

Kevin J Cummings et al. Am J Physiol Regul Integr Comp Physiol. 2005 Jun.
Free article

Abstract

The ventilatory response to several minutes of hypoxia consists of various time-dependent phenomena, some of which occur during hypoxia (e.g., short-term depression), whereas others appear on return to normoxia (e.g., posthypoxic frequency decline). Additional phenomena can be elicited by acute, intermittent hypoxia (e.g., progressive augmentation, long-term facilitation). Current data suggest that these phenomena originate centrally. We tested the hypothesis that carotid body afferent activity undergoes time-dependent modulation, consistent with a direct role in these ventilatory phenomena. Using an in vitro rat carotid body preparation, we found that 1) afferent activity declined during the first 5 min of severe (40 Torr Po(2)), moderate (60 Torr Po(2)), or mild (80 Torr Po(2)) hypoxia; 2) after return to normoxia (100 Torr Po(2)) and after several minutes of moderate or severe hypoxia, afferent activity was transiently reduced compared with prehypoxic levels; and 3) with successive 5-min bouts of mild, moderate, or severe hypoxia, afferent activity during bouts increased progressively. We call these phenomena sensory hypoxic decline, sensory posthypoxic decline, and sensory progressive augmentation, respectively. These phenomena were stimulus specific: similar phenomena were not seen with 5-min bouts of normoxic hypercapnia (100 Torr Po(2) and 50-60 Torr Pco(2)) or hypoxic hypocapnia (60 Torr Po(2) and 30 Torr Pco(2)). However, bouts of either normoxic hypercapnia or hypocapnic hypoxia resulted in sensory long-term facilitation. We suggest time-dependent carotid body activity acts in parallel with central mechanisms to shape the dynamics of ventilatory responses to respiratory chemostimuli.

PubMed Disclaimer

Publication types

LinkOut - more resources