Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan;25(1):54-66.
doi: 10.1038/sj.jcbfm.9600006.

Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia

Affiliations
Comparative Study

Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia

Hai Chen et al. J Cereb Blood Flow Metab. 2005 Jan.

Abstract

We previously demonstrated that pharmacological inhibition of Na(+)-K(+)-Cl- cotransporter isoform 1 (NKCC1) is neuroprotective in in vivo and in vitro ischemic models. In this study, we investigated whether genetic ablation of NKCC1 provides neuroprotection after ischemia. Focal ischemia was induced by 2 hours occlusion of the left middle cerebral artery (MCAO) followed by 10 or 24 hours reperfusion. Two hours MCAO and ten or twenty-four hours reperfusion caused infarction (approximately 85 mm3) in NKCC1 wild-type (NKCC1(+/+)) mice. Infarction volume in NKCC1(-/-) mice was reduced by approximately 30% to 46%. Heterozygous mutant (NKCC1(+/-)) mice showed approximately 28% reduction in infarction (P>0.05). Two hours MCAO and twenty-four hours reperfusion led to a significant increase in brain edema in NKCC1(+/+) mice. In contrast, NKCC1(+/-) and NKCC1(-/-) mice exhibited approximately 50% less edema (P<0.05). Moreover, white matter damage was assessed by immunostaining of amyloid precursor protein (APP). An increase in APP was detected in NKCC1(+/+) mice after 2 hours MCAO and 10 hours reperfusion. However, NKCC1(-/-) mice exhibited significantly less APP accumulation (P<0.05). Oxygen-glucose deprivation (OGD) induced approximately 67% cell death and a fourfold increase in Na+ accumulation in cultured NKCC1(+/+) cortical neurons. OGD-mediated cell death and Na+ influx were significantly reduced in NKCC1(-/-) neurons (P<0.05). In addition, inhibition of NKCC1 by bumetanide resulted in similar protection in NKCC1(+/+) neurons and astrocytes (P<0.05). These results imply that stimulation of NKCC1 activity is important in ischemic neuronal damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources