Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;25(2):226-33.
doi: 10.1038/sj.jcbfm.9600023.

Near-infrared fluorescent imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis

Affiliations

Near-infrared fluorescent imaging of cerebral thrombi and blood-brain barrier disruption in a mouse model of cerebral venous sinus thrombosis

Dong-Eog Kim et al. J Cereb Blood Flow Metab. 2005 Feb.

Erratum in

  • J Cereb Blood Flow Metab. 2005 Jul;25(7):937

Abstract

An intravital microscopy imaging method was developed to visualize active cerebral thrombus and blood-brain barrier (BBB) disruption using Near Infrared Fluorescent (NIRF) probes. A circular craniotomy was made in CD-1 mice. Thrombi were formed by applying 10%-FeCl3 to the entire exposed superior sagittal sinus (SSS, 5 mm), or to the posterior 2.5 mm of the SSS for 5 mins. Control animals were pretreated with heparin (50 U/kg) before thrombus induction. Three hours after thrombus formation, a FXIIIa-targeted NIRF imaging probe (A15) was intravenously injected, and the SSS was imaged by intravital microscopy. This was followed by injection of indocyanine green (ICG) to assess BBB permeability. The A15 optical probe bound to thrombus, and the fluorescent signal emitted by the bound agent corresponded well with histologically confirmed thrombus. A15 initially remained intravascular, followed by excretion and subsequent decrease in all tissues except for thrombus, where it was retained. The subsequent ICG was also intravascular immediately after injection, but then began to leak into the cerebral parenchyma at 3 to 5 mins. The sites of leakage were adjacent to thrombosed areas. Heparin pretreatment prevented thrombus formation and reduced ICG leakage significantly. This demonstrates the feasibility of simultaneous in vivo monitoring of thrombus and BBB permeability in an animal model of cerebral venous thrombosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources