Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 7;44(3):683-90.
doi: 10.1021/ic049599k.

Syntheses and characterization of dicarbonyl-nitrosyl complexes of technetium(I) and rhenium(I) in aqueous media: spectroscopic, structural, and DFT analyses

Affiliations

Syntheses and characterization of dicarbonyl-nitrosyl complexes of technetium(I) and rhenium(I) in aqueous media: spectroscopic, structural, and DFT analyses

Roger Schibli et al. Inorg Chem. .

Abstract

This work describes new synthetic routes to produce mixed carbonyl-nitrosyl complexes of technetium(I) and rhenium(I) in aqueous media. NaNO2, NOHSO4, and NO2(g) have been used to produce in situ nitrous acid as the primary source of NO+. Starting from the organometallic precursor fac-[MX3(CO)3]+, 1 (M = 99Tc, Re; X = Cl, Br), the formation of mixed dicarbonyl-mononitrosyl complexes was observed in aqueous hydrochloric and hydrobromic acid. Time-dependent analyses of the reactions by means of HATR-IR and 99Tc NMR spectroscopy in solution revealed the almost quantitative substitution of one CO ligand by NO+ and, thus, the formation of complexes with facial arrangement of the three pi-acceptor ligands. In the case of technetium, the monomeric complex (NEt4)[TcCl3(CO)2NO] (3a) and the dimeric, chloride-bridged, neutral complex [TcCl(mu-Cl)(CO)2NO]2 (4a) were produced. In the case of rhenium, the monomeric species (NEt4)[ReBr2X(CO)2NO] (X = Br (3b), NO3 (5)) was solely isolated. The X-ray structure of complexes 4a and 5 are discussed. The crystallographic analyses revealed the coordination of the NO+ group trans to the terminal chloride (4a) or the bromide (5), respectively. Crystal data: complex 4a (C4Cl4N2O(6)Tc2), monoclinic, Cc, a = 18.82(3) A, b = 6.103(6) A, c = 12.15(2) A, alpha = 90 degrees , beta = 105.8(2) degrees , gamma = 90 degrees , V = 1343(3) A(3), Z = 4; complex 5 (C10H20N3O(6)Br2Re), orthorhombic, P2(1)2(1)2(1), a = 10.2054(5) A, b = 12.5317(7) A, c = 13.9781(7) A, V = 1787.67(16) A(3), Z = 4. The isolated complexes and their potential facial isomers have been further investigated by density functional theory (DFT) calculations. The energy differences of the isomers are relatively small; however, the calculated energies are consistent with the formation of the observed and isolated compounds. The calculated bond lengths and angles of complex 5 are in good agreement with the data determined by X-ray diffraction. Experiments on the no-carrier-added level starting from fac-[99mTc(H2O)3(CO)3]+ revealed the formation of the complex fac-[99mTcCl(H2O)2(CO)2NO]+ in reasonable good yields. This aqueous-based, synthetic approach will enable the future evaluation of this novel, low-valent metal precursor for potential use in radiopharmacy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources