Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 28;2(1):5.
doi: 10.1186/1742-2094-2-5.

Infiltrative microgliosis: activation and long-distance migration of subependymal microglia following periventricular insults

Affiliations

Infiltrative microgliosis: activation and long-distance migration of subependymal microglia following periventricular insults

W Shawn Carbonell et al. J Neuroinflammation. .

Abstract

BACKGROUND: Subventricular microglia (SVMs) are positioned at the interface of the cerebrospinal fluid and brain parenchyma and may play a role in periventricular inflammatory reactions. However, SVMs have not been previously investigated in detail due to the lack of a specific methodology for their study exclusive of deeper parenchymal microglia. METHODS: We have developed and characterized a novel model for the investigation of subventricular microglial reactions in mice using intracerebroventricular (ICV) injection of high-dose rhodamine dyes. Dynamic studies using timelapse confocal microscopy in situ complemented the histopathological analysis. RESULTS: We demonstrate that high-dose ICV rhodamine dye injection resulted in selective uptake by the ependyma and ependymal death within hours. Phagocytosis of ependymal debris by activated SVMs was evident by 1d as demonstrated by the appearance of rhodamine-positive SVMs. In the absence of further manipulation, labelled SVMs remained in the subventricular space. However, these cells exhibited the ability to migrate several hundred microns into the parenchyma towards a deafferentation injury of the hippocampus. This "infiltrative microgliosis" was verified in situ using timelapse confocal microscopy. Finally, supporting the disease relevance of this event, the triad of ependymal cell death, SVM activation, and infiltrative microgliosis was recapitulated by a single ICV injection of HIV-1 tat protein. CONCLUSIONS: Subependymal microglia exhibit robust activation and migration in periventricular inflammatory responses. Further study of this population of microglia may provide insight into neurological diseases with tendencies to involve the ventricular system and periventricular tissues.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Ependymal damage with rhodamine dyes. (A) Timecourse of ependymal death in the lateral ventricle after rhodamine dye injection demonstrated with digital subtraction. Damage to the ependyma was evident at 12 h and rapidly progressed by 24 h. (B) Histology at 24 h demonstrates swollen ependyma with numerous pyknotic profiles in injected, but not the contralateral, hemisphere. e, ependyma; lv, lateral ventricle; p, parenchyma. RHO fluorescence overlaid on brightfield hematoxylin images. (C) Low-power view of lateral ventricles 3 d after injection demonstrates halo of rhodamine-positive cells around injected ventricle (white arrow). The contralateral ventricle demonstrates labelled ependyma in the absence of damage. (D) By 3 d, near-complete loss of the ependyma was evident. This coincided with the appearance of dye-laden SVMs, black arrowheads. The ependyma remained intact in the contralateral hemisphere (right panels). e, ependyma; lv, lateral ventricle; p, parenchyma; RhoB, rhodamine beads. RHO fluorescence overlaid on brightfield hematoxylin image (RhoB) and photoconverted DiI counterstained with hematoxylin. (E) Periventricular reactive astrocytes (black arrows) visualized with nestin immunohistochemistry (IHC) at 3d post-injection at wall of injected ventricle (left), but not in the contralateral hemisphere (right). lv, lateral ventricle; sp, septum. (F) IHC for ciliated cell-specific foxj1 28d after dye injection demonstrates persistent loss of ependyma in injected hemispere (left). cc, corpus callosum, cp, caudate/putamen; sp, septum. (G) Equivalent volume control injection of GFP-reporter adenovirus demonstrates no ependymal damage 3 weeks after injection. e, ependyma; lv, lateral ventricle; p, parenchyma. GFP fluorescence overlaid on brightfield hematoxylin image.
Figure 2
Figure 2
Selective labelling of SVMs with rhodamine dyes. (A) RHO+ cells are microglia. Transmission electron microscopy demonstrates dye-laden inclusions (white arrows) in a SVM. n, nucleus. (B) Immunohistochemistry for F4/80 (top) and histochemistry for lectin IB4 (bottom) demonstrate double-labelled periventricular cells, white arrows. (C) Time-lapse confocal microscopy in live brain slices demonstrates SVM (white arrow) extending (time 0' and 9') and retracting (time 4.5' and 13.5') a process toward ependymal debris (yellow star) highly suggestive of phagocytosis. See also Video 1. lv, lateral ventricle; p, parenchyma. (D) Neuraminidase injection following sublethal ependymal labelling similarly results in RHO+ SVMs (black arrows). e, ependyma; lv, lateral ventricle; p, parenchyma. Left panels, hematoxylin; Right panels, RHO fluorescence overlaid on hematoxylin.
Figure 3
Figure 3
Infiltration of parenchyma by SVMs after injury. (A) SVMs infiltrated the stratum oriens of the hippocampus in injured mice (right panel) but not in sham animals (left panel). cSO, contralateral stratum oriens of hippocampus; ffx, fimbria/fornix; lv, lateral ventricle; th, thalamus. (B) SVMs migrate significantly farther into parenchyma of injured animals compared to sham injury (*p < 0.01). (C) Infiltration of hippocampus begins days after injury and cells remain for weeks (*p < 0.05 compared to sham). (D) Temporal pattern of infiltration corresponds to neuropil degeneration (black punctate staining, bottom left) activation of resident microglia (shown by increased IB4 staining, bottom middle) and glial activation (indicated by phospho-ERK immunoreactivity, bottom right). GSD, Gallyas silver degeneration stain; pERK, phospho-extracellular signal-related kinase.
Figure 4
Figure 4
Dynamics of infiltrative microgliosis. (A) 2D projections of confocal images demonstrate three migratory cells (large and small white arrows) migrating into the cSO. white arrowhead, non-migratory cell for reference. e, ependyma; cSO, stratum oriens. See also Video 2. (B) Migration was highly directed from ventricle to hippocampus, five representative cells from a single experiment. lv, lateral ventricle; black stars, cell origin (C) Highly polarized, migratory morphologies of RHO+ cells as demonstrated by confocal 3D reconstruction. cb, cell body; lpr, leading process; tpr, trailing process.
Figure 5
Figure 5
HIV-1 tat injection activates SVMs and incites IMG. (A) Ependymal loss (top left) and subventricular microgliosis (bottom left) 24 h following injection of 2.0 nmol tat protein but not in animals injected with deactivated tat (right panels). (B) To determine if tat-activated SVMs migrated in situ we rendered timelapse confocal movies 24 h post-injection. Colored arrowheads demonstrate three SVMs which migrate from the region near the ventricle (green line) deep into the parenchyma (colored dashed lines). Field measures ~200 μm horizontally. See also Video 5.

Similar articles

Cited by

References

    1. Becher B, Prat A, Antel JP. Brain-immune connection: immunoregulatory properties of CNS-resident cells. Glia. 2000;29:293–304. - PubMed
    1. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–318. doi: 10.1016/0166-2236(96)10049-7. - DOI - PubMed
    1. Ling E A, Kaur C, Lu J. Origin, nature and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech. 1998;41:43–56. - PubMed
    1. Doetsch F, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neuronal stem cells in the adult mammalian brain. Cell. 1999;97:703–716. doi: 10.1016/S0092-8674(00)80783-7. - DOI - PubMed
    1. Steiniger B, van der Meide PH. Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon. J Neuroimmunol. 1988;19:111–118. doi: 10.1016/0165-5728(88)90040-9. - DOI - PubMed

LinkOut - more resources