Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan 28;120(2):275-85.
doi: 10.1016/j.cell.2004.11.049.

Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity

Affiliations
Free article

Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity

Daniele Bano et al. Cell. .
Free article

Abstract

In brain ischemia, gating of postsynaptic glutamate receptors and other membrane channels triggers intracellular Ca2+ overload and cell death. In excitotoxic settings, the initial Ca2+ influx through glutamate receptors is followed by a second uncontrolled Ca2+ increase that leads to neuronal demise. Here we report that the major plasma membrane Ca2+ extruding system, the Na+/Ca2+ exchanger (NCX), is cleaved during brain ischemia and in neurons undergoing excitotoxicity. Inhibition of Ca2+-activated proteases (calpains) by overexpressing their endogenous inhibitor protein, calpastatin or the expression of an NCX isoform not cleaved by calpains, prevented Ca2+ overload and rescued neurons from excitotoxic death. Conversely, down-regulation of NCX by siRNA compromised neuronal Ca2+ handling, transforming the Ca2+ transient elicited by non-excitotoxic glutamate concentrations into a lethal Ca2+overload. Thus, proteolytic inactivation of NCX-driven neuronal Ca2+ extrusion is responsible for the delayed excitotoxic Ca2+ deregulation and neuronal death.

PubMed Disclaimer

Publication types

MeSH terms