Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 Feb;79(2):655-65.
doi: 10.1016/j.athoracsur.2004.07.044.

Effects of methylprednisolone and a biocompatible copolymer circuit on blood activation during cardiopulmonary bypass

Affiliations
Clinical Trial

Effects of methylprednisolone and a biocompatible copolymer circuit on blood activation during cardiopulmonary bypass

Fraser D Rubens et al. Ann Thorac Surg. 2005 Feb.

Abstract

Background: Cardiopulmonary bypass (CPB) induces derangements in physiology characterized by activation of blood pathways that may contribute to multiorgan dysfunction. This trial addresses the efficacy of a biocompatible surface alone and in combination with steroids in inhibiting these changes.

Methods: In a factorial design, patients undergoing coronary artery bypass grafting were randomized (four groups; n = 17 per group) to CPB utilizing control circuits or a circuit prepared with a surface modifying active copolymer (SMA-CPB), with or without methylprednisolone (MPSS, 1 g intravenous). Leukocyte and complement activation, cytokine release, and bradykinin generation were measured. Clinical outcomes (blood loss, transfusion, arterial pressure response, and postoperative cardiac and pulmonary functions) were also examined.

Results: The SMA-CPB was associated with a significant inhibition of elastase release (p = 0.026) and bradykinin generation (p = 0.027) during CPB. Terminal complement complex (TCC) generation was inhibited as an effect of SMA-CPB (p = 0.047). There was an interaction of SMA-CPB and MPSS to decrease both TCC (p = 0.042) and bradykinin generation (p = 0.028). There were strong effects of MPSS in inhibiting release of interleukin 6 (IL-6) (p = 0.007) and IL-8 (p < 0.001) and tissue plasminogen activator over time (p = 0.009) as well as decreasing peak day 1 creatine kinase (CK, p = 0.015) levels. Clinical effects of MPSS included decreased atrial fibrillation (p = 0.02), improved cardiac index over time, increased pulmonary compliance, and increased insulin need.

Conclusions: This trial suggests a potential beneficial effect for combined strategies to minimize inflammation after CPB. The specific effect of MPSS in decreasing postoperative atrial fibrillation and CK warrants further investigation of its role as a potential myocardial protective agent.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources