Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Dec:1035:34-48.
doi: 10.1196/annals.1332.003.

The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5'-untranslated region

Affiliations
Comparative Study

The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5'-untranslated region

Amanda Venti et al. Ann N Y Acad Sci. 2004 Dec.

Abstract

The Alzheimer's amyloid precursor protein (APP) is the metalloprotein that is cleaved to generate the pathogenic Abeta peptide. We showed that iron closely regulated the expression of APP by 5'-untranslated region (5'-UTR) sequences in APP mRNA. Iron modulated APP holoprotein expression by a pathway similar to iron control of the translation of the ferritin-L and -H mRNAs by iron-responsive elements in their 5'-UTRs. APP gene transcription is also responsive to copper deficit where the Menkes protein depleted fibroblasts of copper to suppress transcription of APP through metal regulatory and copper regulatory sequences upstream of the APP 5' cap site. APP is a copper-zinc metalloprotein and chelation of Fe(3+) by desferrioxamine and Cu(2+) by clioquinol appeared to provide effective therapy for the treatment of AD in limited patient studies. We have introduced an RNA-based screen for small APP 5'-UTR binding molecules to identify leads that limit APP translation (but not APLP-1 and APLP-2) and amyloid Abeta peptide production. A library of 1200 drugs was screened to identify lead drugs that limited APP 5'-UTR-directed translation of a reporter gene. The efficacy of these leads was confirmed for specificity in a cell-based secondary assay to measure the steady-state levels of APP holoprotein relative to APLP-1/APLP-2 by Western blotting. Several chelators were identified among the APP 5'-UTR directed leads consistent with the presence of an IRE stem-loop in front of the start codon of the APP transcript. The APP 5'-UTR-directed drugs--desferrioxamine (Fe(3+) chelator), tetrathiomolybdate (Cu(2+) chelator), and dimercaptopropanol (Pb(2+) and Hg(2+) chelator)--each suppressed APP holoprotein expression (and lowered Abeta peptide secretion). The novel anticholinesterase phenserine also provided "proof of concept" for our strategy to target the APP 5'-UTR sequence to identify "anti-amyloid" drugs. We further defined the interaction between iron chelation and phenserine action to control APP 5'-UTR-directed translation in neuroblastoma (SY5Y) transfectants. Phenserine was most efficient to block translation under conditions of intracellular iron chelation with desferrioxamine suggesting that this anticholinesterase operated through an iron (metal)-dependent pathway at the APP 5'-UTR site.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources