Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 14;11(6):797-802.
doi: 10.3748/wjg.v11.i6.797.

Polymorphisms of uridine-diphosphoglucuronosyltransferase 1A7 gene in Taiwan Chinese

Affiliations

Polymorphisms of uridine-diphosphoglucuronosyltransferase 1A7 gene in Taiwan Chinese

May-Jen Huang et al. World J Gastroenterol. .

Abstract

Aim: Single nucleotide polymorphisms (SNPs) of uridine-diphosphoglucuro-nosyltransferase 1A7 (UGT1A7) gene are associated with the development of orolaryngeal cancer, hepatocellular carcinoma, and colorectal cancer. We performed this research to establish the techniques for determining UGT1A7 gene and basic data of this gene for Taiwan Chinese.

Methods: We collected blood samples from 112 healthy adults and 505 subjects carrying different genotypes of UGT1A1, and determined the promoter area and the entire sequence of UGT1A7 exon 1 by polymerase chain reaction. We designed appropriate primers and restriction enzymes to detect variant UGT1A7 genotypes found in the study subjects.

Results: Six SNPs at nucleotides 33, 387, 391, 392, 622, and 756 within the coding region of UGT1A7 exon 1 were found. The incidence of UGT1A7 *1/*2 (N129R131W208/K129K131W208) was predominant (35.7%) while that of UGT1A7 *3/*3 (K129K131R208/K129K131R208) was the least (2.7%). The allele frequency of UGT1A7*3, which exists in a considerable proportion of Caucasians (0.361) and Japanese (0.255), was identified only to be 0.152 in our study subjects. A novel variation at nucleotide -57 in the upstream was found, which was associated with SNPs at nucleotides 33, 387, 391, 392, and 622 in one of the variant haplotypes. The nucleotide changes at positions 387, 391, 392 and 756 were in linkage in another variant haplotype. The allele frequency of UGT1A7*3 was 0.018, 0.158, 0.242, 0.433, and 0.920 in subjects carrying wild, A(TA) (6)TAA/A(TA)(7)TAA, A(TA)(7)TAA/A(TA)(7)TAA, 211G/211A, and 211A/211A variants of UGT1A1 gene, respectively. By using natural or mutagenesis primers, we successfully detected the variations at nucleotides -57, 33, 387, and 622 with the restriction enzymes HpyCH4 IV, Taq I, Afl II, and Rsa I, respectively.

Conclusion: The results indicate that the allele frequencies of UGT1A7 gene in Taiwan Chinese are different from those in Caucasians and Japanese. Carriage of the nucleotide 211- variant UGT1A gene is highly associated with UGT1A7*3. The restriction-enzyme-digestion method for the determination of nucleotides -57 (or 33, or 622) and 387 can rapidly identify genotypes of UGT1A7 in an individual.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Representative electropherograms of (A) homozygous N129 R131 (nucleotides 387-392: TGACCG), (B) heterozygous K129 K131 (nucleotides 387-392: T/GGACC/AG/A), (C) homozygous K129 K131 (nucleotides 387- 392: GGACAA), (D) homozygous W208 (nucleotide 622: T), (E) heterozygous W208/R208 (nucleotide 622: T/C), (F) - 57 T, and (G) - 57 T/G. Sequences were read reversely and nucleotides were translated into complements for (A), (B), and (C). The arrows indicate the sites of single nucleotide polymorphism.
Figure 2
Figure 2
Results of restriction fragments at nucleotides (A) 387, (B) 622, and (C) -57, digested by Afl II, Rsa I, and HpyCH4 IV, respectively. The bands of 19, 54, and 57 bp were too small to be seen (bp = base pair, M: DNA size marker, N: wild type, V: variant).

Similar articles

Cited by

References

    1. Nebert DW, Ingelman-Sundberg M, Daly AK. Genetic epidemiology of environmental toxicity and cancer susceptibility: human allelic polymorphisms in drug-metabolizing enzyme genes, their functional importance, and nomenclature issues. Drug Metab Rev. 1999;31:467–487. - PubMed
    1. Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev. 1999;31:817–899. - PubMed
    1. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7:255–269. - PubMed
    1. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, Kubota S, Carvalho S, Pennington MW, Owens IS, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics. 2001;11:357–368. - PubMed
    1. Ciotti M, Marrone A, Potter C, Owens IS. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics. 1997;7:485–495. - PubMed

Publication types

Substances