Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 May;70(5):885-92.
doi: 10.1161/01.res.70.5.885.

Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat

Affiliations
Free article
Comparative Study

Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat

P A Hofmann et al. Circ Res. 1992 May.
Free article

Abstract

Effects of [Ca2+] on isometric tension and unloaded shortening velocity were characterized in single chemically skinned myocytes from frog atrium and in mechanically disrupted myocardium from rat ventricle. The preparations were attached to a force transducer and piezoelectric translator and were viewed with an inverted microscope to allow continuous monitoring of sarcomere length during mechanical measurements. Unloaded shortening velocity was determined by measuring the time required to take up various amounts of slack imposed at one end of each preparation. Ca2+ sensitivity of isometric tension was assessed as pCa50, i.e., the Ca2+ concentration at which tension was 50% maximal, and was greater for frog atrial myocytes (pCa50 6.17) than for rat ventricular myocytes (pCa50 6.06). This difference in Ca2+ sensitivity may be due to variations in myofibrillar protein isoform composition in the two preparations. Inclusion of caffeine in the activating solutions substantially increased the Ca2+ sensitivity of tension, which may be a manifestation of a direct effect of caffeine on the myofibrillar proteins. Unloaded shortening velocity during maximal activation averaged 4.32 muscle lengths per second in frog atrial myocytes and 4.46 muscle lengths per second in rat ventricular myocytes. When [Ca2+] was reduced, unloaded shortening velocity decreased substantially in both preparations. Possible mechanisms for the effect of Ca2+ on shortening velocity in myocardium include Ca2+ dependence of the rate of ADP dissociation from actomyosin complexes or a shortening-dependent internal load involving structures such as C protein or long-lived myosin cross-bridges.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources