Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;31(2):153-8.
doi: 10.1016/j.burns.2004.09.002.

Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge

Affiliations

Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge

Alice N Neely et al. Burns. 2005 Mar.

Abstract

The type III secretion system consists of secreted exoproducts and structural components, such as PcrV, and this system plays an important role in the virulence of Pseudomonas aeruginosa in burned hosts. The purpose of this study was to determine if passive anti-PcrV treatment would protect burned mice from fatal P. aeruginosa challenge, and to determine the type III exoproduct phenotype of the P. aeruginosa used as challenge strains. Antiserum was raised in rabbits. Mice were given a third degree burn, challenged with a lethal dose of P. aeruginosa, and treated with either anti-PcrV or control immunoglobulin intraperitoneally. Protection against three different pseudomonads was tested. Genotyping by PCR and phenotyping by immunoblots showed the P. aeruginosa strains to all be of the invasive type III phenotype: ExoS+ and/or ExoT+, ExoU-, ExoY+. Against all strains, the anti-PcrV treatment yielded significantly better survival (p<0.05) than the control immunoglobulin treatment. Duration of significant protection was improved by giving a second injection of PcrV antisera at 24h postburn. Hence, passive anti-PcrV immunization could protect burned mice against fatal challenge with P. aeruginosa of an invasive type III phenotype. This immunotherapy might be explored further as possible treatment for highly antibiotic resistant P. aeruginosa infections in burned hosts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources