Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 9;127(5):1346-7.
doi: 10.1021/ja044129a.

Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor

Affiliations

Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor

Frank V Cochran et al. J Am Chem Soc. .

Erratum in

  • J Am Chem Soc. 2006 Jan 18;128(2):663

Abstract

We report the complete de novo design of a four-helix bundle protein that selectively binds the nonbiological DPP-Fe(III) metalloporphyrin cofactor (DPP-Fe(III) = 5, 15-Di[(4-carboxymethyleneoxy)phenyl]porphinato iron(III)). A tetrameric, D2-symmetric backbone scaffold was constructed to encapsulate two DPP-Fe(III) units through bis(His) coordination. The complete sequence was determined with the aid of the statistical computational design algorithm SCADS. The 34-residue peptide was chemically synthesized. UV-vis and CD spectroscopy, size-exclusion chromatography, and analytical ultracentrifugation indicated the peptide undergoes a transition from a predominantly random coil monomer to an alpha-helical tetramer upon binding DPP-Fe(III). EPR spectroscopy studies indicated the axial imidazole ligands were oriented in a perpendicular fashion, as defined by second-shell interactions that were included in the design. The 1-D 1H NMR spectrum of the assembled protein displayed features of a well-packed interior. The assembled protein possessed functional redox properties different from those of structurally similar systems containing the heme cofactor. The designed peptide demonstrated remarkable cofactor selectivity with a significantly weaker binding affinity for the natural heme cofactor. These findings open a path for the selective incorporation of more elaborate cofactors into designed scaffolds for constructing molecularly well-defined nanoscale materials.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources