Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jul;30(7):1324-33.
doi: 10.1038/sj.npp.1300678.

Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists

Affiliations
Free article
Comparative Study

Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists

Elena H Chartoff et al. Neuropsychopharmacology. 2005 Jul.
Free article

Abstract

N-methyl-D-aspartate (NMDA) receptor antagonists can elicit symptoms in humans that resemble those seen in schizophrenic patients. Rodents manifest locomotor and stereotypic behaviors when treated with NMDA receptor antagonists such as phencyclidine (PCP) or dizocilpine maleate (MK-801); these behaviors are usually associated with an activated dopamine system. However, recent evidence suggests that increased glutamatergic transmission mediates the effects of these NMDA receptor antagonists. The role of dopamine in PCP- and MK-801-induced behavior (eg hyperlocomotion) remains unclear. We used dopamine-deficient (DD) mice in which tyrosine hydroxylase is selectively inactivated in dopaminergic neurons to determine whether dopamine is required for the locomotor and molecular effects of PCP and MK-801. DD mice showed a similar increase in locomotor activity and c-fos mRNA induction in the striatum in response to these NMDA receptor antagonists as control mice. Restoration of dopamine signaling in DD mice enhanced their locomotor response to PCP and MK-801. Administration of LY379268, a group II metabotropic glutamate receptor agonist that inhibits glutamate release, blocked PCP- and MK-801-induced hyperlocomotion in both DD and control mice. These results suggest that glutamate, rather than dopamine, is required for the locomotor and molecular effects of NMDA receptor antagonists, but that glutamate and dopamine can act cooperatively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources