Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar-Apr;45(2-3):162-76.
doi: 10.1002/em.20113.

Generation of loss of heterozygosity and its dependency on p53 status in human lymphoblastoid cells

Affiliations
Review

Generation of loss of heterozygosity and its dependency on p53 status in human lymphoblastoid cells

Masamitsu Honma. Environ Mol Mutagen. 2005 Mar-Apr.

Abstract

Loss of heterozygosity (LOH) is a critical event in the development of human cancers. LOH is thought to result from either a large deletion or recombination between homologous alleles during repair of DNA double-strand breaks (DSBs). These types of genetic alterations produce mutations in the TK gene mutation assay, which detects a wide mutational spectrum, ranging from point mutations to LOH-type mutations. TK6, a human lymphoblastoid cell line, is heterozygous for the thymidine kinase (TK) gene and has a wild-type p53 gene. The related cell lines, TK6-E6 and WTK-1, which are p53-deficient and p53-mutant (Ile237), respectively, are also heterozygous for the TK gene and LOH-type mutation can be detected in these cells. Therefore, comparative studies of TK mutation frequency and spectrum with these cell lines are useful for elucidating the role of p53 in generating LOH and maintaining genomic stability in human cells. We demonstrate here that LOH and its associated genomic instability strongly depend on the p53 status in these cells. TK6-E6 and WTK-1 are defective in the G1/S checkpoint and in apoptosis. Unrepaired DSBs that escape from the checkpoint can potentially initiate genomic instability after DNA replication, resulting in LOH and a variety of chromosome changes. Moreover, genomic instability is enhanced in WTK-1 cells. It is likely that the mutant p53 protein in WTK-1 cells increases LOH in a dominant-negative manner due to its abnormal recombination capacity. We discuss the mutator phenotype and genomic instability associated with p53 inactivation with the goal of elucidating the mechanisms of mutation and DNA repair in untargeted mutagenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources