Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression
- PMID: 1569081
Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803 and in the enterobacterium Escherichia coli delta-amino-levulinic acid (ALA) is formed from glutamyl-tRNA by the sequential action of two enzymes, glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde aminotransferase. E. coli has two GluTR proteins with sizes of 45 kDa (GluTR45) and 85 kDa (GluTR85) (Jahn, D., Michelsen, U., and Söll, D. (1991) J. Biol. Chem. 266, 2542-2548). The hemA gene, isolated from E. coli and several other eubacteria, has been proposed to encode a structural component of GluTR. Because of the inability to overexpress this gene in E. coli, we demonstrate directly GluTR function for the E. coli hemA gene product by its expression and functional analysis in yeast, which does not form ALA from Glu-tRNA. Gel filtration experiments demonstrated definitively that the yeast-expressed HemA protein corresponded to GluTR45. Furthermore, analysis of GluTR activity in an E. coli strain with a disrupted hemA gene displayed GluTR85, but not GluTR45 activity. The hemA gene from Synechocystis 6803 was cloned by functional complementation in E. coli. DNA sequence analysis revealed an open reading frame capable of encoding a 427-amino acid polypeptide (molecular mass of 47,525 Da). The Synechocystis 6803 amino acid sequence shows significant similarity upon alignment with HemA sequences from E. coli, Bacillus subtilis, Salmonella typhimurium, and Chlorobium vibrioforme but does not contain the amino acid sequence derived from the N terminus of the previously purified GluTR protein (Rieble, S., and Beale, S. I. (1991) J. Biol. Chem. 266, 9740-9745). These experiments are the first direct demonstration of GluTR activity of the HemA protein and provide further evidence for two pathways of ALA formation in prokaryotes.
Similar articles
-
Structure and expression of the Chlorobium vibrioforme hemA gene.Arch Microbiol. 1991;156(4):281-9. doi: 10.1007/BF00262999. Arch Microbiol. 1991. PMID: 1793335
-
Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate.J Biol Chem. 2002 Dec 13;277(50):48657-63. doi: 10.1074/jbc.M206924200. Epub 2002 Oct 4. J Biol Chem. 2002. PMID: 12370189
-
Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley.Plant J. 1996 Jun;9(6):867-78. doi: 10.1046/j.1365-313x.1996.9060867.x. Plant J. 1996. PMID: 8696365
-
Expression of glutamyl-tRNA reductase in Escherichia coli.Biochim Biophys Acta. 1996 Nov 11;1309(1-2):109-21. doi: 10.1016/s0167-4781(96)00117-0. Biochim Biophys Acta. 1996. PMID: 8950186
-
Cloning and characterization of the hemA gene for synthesis of delta-aminolevulinic acid in Xanthomonas campestris pv. phaseoli.Appl Microbiol Biotechnol. 1994 Feb;40(6):846-50. doi: 10.1007/BF00173986. Appl Microbiol Biotechnol. 1994. PMID: 7764570
Cited by
-
Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product.J Bacteriol. 1996 Feb;178(3):638-46. doi: 10.1128/jb.178.3.638-646.1996. J Bacteriol. 1996. PMID: 8550494 Free PMC article.
-
Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant.J Bacteriol. 1994 Feb;176(3):673-80. doi: 10.1128/jb.176.3.673-680.1994. J Bacteriol. 1994. PMID: 8300522 Free PMC article.
-
Maintenance of heme homeostasis in Staphylococcus aureus through post-translational regulation of glutamyl-tRNA reductase.J Bacteriol. 2023 Sep 26;205(9):e0017123. doi: 10.1128/jb.00171-23. Epub 2023 Sep 1. J Bacteriol. 2023. PMID: 37655914 Free PMC article.
-
The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme.Plant Mol Biol. 2005 Jul;58(5):643-58. doi: 10.1007/s11103-005-6803-x. Plant Mol Biol. 2005. PMID: 16158240
-
Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments.J Bacteriol. 1996 May;178(9):2471-8. doi: 10.1128/jb.178.9.2471-2478.1996. J Bacteriol. 1996. PMID: 8626311 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases