Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 25;267(12):8452-7.

Role of asparagine-111 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum as explored by site-directed mutagenesis

Affiliations
  • PMID: 1569095
Free article

Role of asparagine-111 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum as explored by site-directed mutagenesis

T S Soper et al. J Biol Chem. .
Free article

Abstract

Crystallographic studies of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum suggest that active-site Asn111 interacts with Mg2+ and/or substrate (Lundqvist, T., and Schneider, G. (1991) J. Biol. Chem. 266, 12604-12611). To examine possible catalytic roles of Asn111, we have used site-directed mutagenesis to replace it with a glutaminyl, aspartyl, seryl, or lysyl residue. Although the mutant proteins are devoid of detectable carboxylase activity, their ability to form a quaternary complex comprised of CO2, Mg2+, and a reaction-intermediate analogue is indicative of competence in activation chemistry and substrate binding. The mutant proteins retain enolization activity, as measured by exchange of the C3 proton of ribulose bisphosphate with solvent, thereby demonstrating a preferential role of Asn111 in some later step of overall catalysis. The active sites of this homodimeric enzyme are formed by interactive domains from adjacent subunits (Larimer, F. W., Lee, E. H., Mural, R. J., Soper, T. S., and Hartman, F. C. (1987) J. Biol. Chem. 262, 15327-15329). Crystallography assigns Asn111 to the amino-terminal domain of the active site (Knight, S., Anderson, I., and Brändén, C.-I. (1990) J. Mol. Biol. 215, 113-160). The observed formation of enzymatically active heterodimers by the in vivo hybridization of an inactive position-111 mutant with inactive carboxyl-terminal domain mutants is consistent with this assignment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources