Evaluation of the gene-specific dye bias in cDNA microarray experiments
- PMID: 15691855
- DOI: 10.1093/bioinformatics/bti302
Evaluation of the gene-specific dye bias in cDNA microarray experiments
Abstract
Motivation: In cDNA microarray experiments all samples are labeled with either Cy3 or Cy5. Systematic and gene-specific dye bias effects have been observed in dual-color experiments. In contrast to systematic effects which can be corrected by a normalization method, the gene-specific dye bias is not completely suppressed and may alter the conclusions about the differentially expressed genes.
Methods: The gene-specific dye bias is taken into account using an analysis of variance model. We propose an index, named label bias index, to measure the gene-specific dye bias. It requires at least two self-self hybridization cDNA microarrays.
Results: After lowess normalization we have found that the gene-specific dye bias is the major source of experimental variability between replicates. The ratio (R/G) may exceed 2. As a consequence false positive genes may be found in direct comparison without dye-swap. The stability of this artifact and its consequences on gene variance and on direct or indirect comparisons are addressed.
Availability: http://www.inapg.inra.fr/ens_rech/mathinfo/recherche/mathematique
Comment in
-
Comment on 'Evaluation of the gene-specific dye bias in cDNA microarray experiments'.Bioinformatics. 2005 Jun 15;21(12):2803-4. doi: 10.1093/bioinformatics/bti428. Epub 2005 Apr 7. Bioinformatics. 2005. PMID: 15817695 No abstract available.
Similar articles
-
Comment on 'Evaluation of the gene-specific dye bias in cDNA microarray experiments'.Bioinformatics. 2005 Jun 15;21(12):2803-4. doi: 10.1093/bioinformatics/bti428. Epub 2005 Apr 7. Bioinformatics. 2005. PMID: 15817695 No abstract available.
-
Answer to the comments of K. Dobbin, J. Shih and R. Simon on the paper 'Evaluation of the gene-specific dye-bias in cDNA microarray experiments'.Bioinformatics. 2005 Jul 15;21(14):3065. doi: 10.1093/bioinformatics/bti479. Epub 2005 Jun 7. Bioinformatics. 2005. PMID: 15941744 No abstract available.
-
Characterizing dye bias in microarray experiments.Bioinformatics. 2005 May 15;21(10):2430-7. doi: 10.1093/bioinformatics/bti378. Epub 2005 Mar 17. Bioinformatics. 2005. PMID: 15774555
-
Classification based upon gene expression data: bias and precision of error rates.Bioinformatics. 2007 Jun 1;23(11):1363-70. doi: 10.1093/bioinformatics/btm117. Epub 2007 Mar 28. Bioinformatics. 2007. PMID: 17392326 Review.
-
A Bayesian method for analysing spotted microarray data.Brief Bioinform. 2005 Dec;6(4):318-30. doi: 10.1093/bib/6.4.318. Brief Bioinform. 2005. PMID: 16420731 Review.
Cited by
-
SIMAGE: simulation of DNA-microarray gene expression data.BMC Bioinformatics. 2006 Apr 13;7:205. doi: 10.1186/1471-2105-7-205. BMC Bioinformatics. 2006. PMID: 16613602 Free PMC article.
-
Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity.Funct Integr Genomics. 2013 Jun;13(2):191-205. doi: 10.1007/s10142-013-0312-9. Epub 2013 Feb 19. Funct Integr Genomics. 2013. PMID: 23420032 Free PMC article.
-
A novel technique for measuring variations in DNA copy-number: competitive genomic polymerase chain reaction.BMC Genomics. 2007 Jul 2;8:206. doi: 10.1186/1471-2164-8-206. BMC Genomics. 2007. PMID: 17601344 Free PMC article.
-
Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.BMC Plant Biol. 2008 Sep 10;8:91. doi: 10.1186/1471-2229-8-91. BMC Plant Biol. 2008. PMID: 18783601 Free PMC article.
-
Bayesian integrated modeling of expression data: a case study on RhoG.BMC Bioinformatics. 2010 Jun 1;11:295. doi: 10.1186/1471-2105-11-295. BMC Bioinformatics. 2010. PMID: 20515463 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials