Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 1;73(1):90-6.
doi: 10.1002/jbm.a.30268.

Physical characteristics of small intestinal submucosa scaffolds are location-dependent

Affiliations

Physical characteristics of small intestinal submucosa scaffolds are location-dependent

Devanathan Raghavan et al. J Biomed Mater Res A. .

Abstract

Using biodegradable scaffolds as an alternative to engineer new tissues has become an attractive candidate in various transplantation protocols. In particular, small intestinal submucosa (SIS), a dense connective matrix harvested from the small intestine, has gained attention due to a number of favorable properties. However, use of SIS is constrained by obtaining reliable, reproducible products in large-scale preparations that affect the regenerative process. To better understand the heterogeneous nature of SIS, this study focused on evaluating the location-dependent alterations in the physical characteristics of the matrices harvested from distal and proximal ends and processed in-house (referred as hand-made). Additionally, results were compared with a commercially available machine-made Cook SIS. Tensile properties during monotonic loading and cyclical loading were compared in wet conditions. Furthermore, permeability of these membranes to urea was analyzed using a custom-built chamber, and the microarchitecture was analyzed via scanning electron microscopy. These results showed that distal samples were more elastic and less permeable to urea relative to other samples. However, permeability in each sample was direction-dependent, that is, mucosal to serosal direction was less permeable compared to sorasal to mucosal direction in all the samples. Cook SIS was more susceptible to cyclical loading and had a shorter range of load carrying capacity. In summary, results show that physical characteristics of SIS are location-dependent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources