Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;9(1):R46-52.
doi: 10.1186/cc3018. Epub 2004 Dec 23.

Timing of tracheostomy as a determinant of weaning success in critically ill patients: a retrospective study

Affiliations

Timing of tracheostomy as a determinant of weaning success in critically ill patients: a retrospective study

Chia-Lin Hsu et al. Crit Care. 2005 Feb.

Abstract

Introduction: Tracheostomy is frequently performed in critically ill patients for prolonged intubation. However, the optimal timing of tracheostomy, and its impact on weaning from mechanical ventilation and outcomes in critically ill patients who require mechanical ventilation remain controversial.

Methods: The medical records of patients who underwent tracheostomy in the medical intensive care unit (ICU) of a tertiary medical centre from July 1998 to June 2001 were reviewed. Clinical characteristics, length of stay in the ICU, rates of post-tracheostomy pneumonia, weaning from mechanical ventilation and mortality rates were analyzed.

Results: A total of 163 patients (93 men and 70 women) were included; their mean age was 70 years. Patients were classified into two groups: successful weaning (n = 78) and failure to wean (n = 85). Shorter intubation periods (P = 0.02), length of ICU stay (P = 0.001) and post-tracheostomy ICU stay (P = 0.005) were noted in patients in the successful weaning group. Patients who underwent tracheostomy more than 3 weeks after intubation had higher ICU mortality rates and rates of weaning failure. The length of intubation correlated with the length of ICU stay in the successful weaning group (r = 0.70; P < 0.001). Multivariate analysis revealed that tracheostomy after 3 weeks of intubation, poor oxygenation before tracheostomy (arterial oxygen tension/fractional inspired oxygen ratio <250) and occurrence of nosocomial pneumonia after tracheostomy were independent predictors of weaning failure.

Conclusion: The study suggests that tracheostomy after 21 days of intubation is associated with a higher rate of failure to wean from mechanical ventilation, longer ICU stay and higher ICU mortality.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The relationship of weaning rates, ICU mortality and durations of intubation. (a) Rate of successful weaning in patients who underwent tracheostomy after different durations of intubation. The rate of successful weaning declined when patients underwent tracheostomy after 21 days of intubation. (b) Intensive care unit (ICU) mortality rates in patients who underwent tracheostomy after different durations of intubation. The ICU mortality rates increased when the patients underwent tracheostomy after 21 days of intubation.
Figure 2
Figure 2
Correlation of intubation period and the length of intensive care unit (ICU) stay in patients who weaned successfully.
Figure 3
Figure 3
Survival curves of independent predictors of weaning failure. (a) Difference in rates of successful weaning between patients who underwent tracheostomy within 21 days (dotted line) and those who underwent tracheostomy later than 21 days (solid line; P < 0.001). (b) Difference in rates of successful weaning between patients with an arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) ratio > 250 (dotted line) and those with a PaO2/FiO2 ratio < 250 (solid line; P < 0.001) before tracheostomy. (c) Difference in rates of successful weaning between the patients with post-tracheostomy pneumonia (solid line) and those without post-tracheostomy pneumonia (dotted line; P < 0.001)

References

    1. Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwaser R, Soto L, Bugedo G, et al. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med. 2000;161:1450–1458. - PubMed
    1. Heffner JE, Miller KS, Sahn SA. Tracheostomy in the intensive care unit. Part 1: Indications, technique, management. Chest. 1986;90:269–274. - PubMed
    1. Heffner JE. Medical indications for tracheotomy. Chest. 1989;96:186–190. - PubMed
    1. Astrachan DI, Kirchner JC, Goodwin WJ., Jr Prolonged intubation vs. tracheotomy: complications, practical and psychological considerations. Laryngoscope. 1988;98:1165–1169. - PubMed
    1. Diehl JL, El Atrous S, Touchard D, Lemaire F, Brochard L. Changes in the work of breathing induced by tracheotomy in ventilator-dependent patients. Am J Respir Crit Care Med. 1999;159:383–388. - PubMed