Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Feb;9(1):51-9.
doi: 10.1186/cc2918. Epub 2004 Aug 5.

Bench-to-bedside review: Permissive hypercapnia

Affiliations
Review

Bench-to-bedside review: Permissive hypercapnia

Donall O'Croinin et al. Crit Care. 2005 Feb.

Abstract

Current protective lung ventilation strategies commonly involve hypercapnia. This approach has resulted in an increase in the clinical acceptability of elevated carbon dioxide tension, with hypoventilation and hypercapnia 'permitted' in order to avoid the deleterious effects of high lung stretch. Advances in our understanding of the biology of hypercapnia have prompted consideration of the potential for hypercapnia to play an active role in the pathogenesis of inflammation and tissue injury. In fact, hypercapnia may protect against lung and systemic organ injury independently of ventilator strategy. However, there are no clinical data evaluating the direct effects of hypercapnia per se in acute lung injury. This article reviews the current clinical status of permissive hypercapnia, discusses insights gained to date from basic scientific studies of hypercapnia and acidosis, identifies key unresolved concerns regarding hypercapnia, and considers the potential clinical implications for the management of patients with acute lung injury.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602. - DOI - PubMed
    1. Anonymous Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed
    1. Pinhu L, Whitehead T, Evans T, Griffiths M. Ventilator-associated lung injury. Lancet. 2003;361:332–340. doi: 10.1016/S0140-6736(03)12329-X. - DOI - PubMed
    1. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med. 2002;28:406–413. doi: 10.1007/s00134-001-1178-1. - DOI - PubMed
    1. Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med. 2001;164:795–801. - PubMed