Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 17;1706(3):239-49.
doi: 10.1016/j.bbabio.2004.11.005.

Non-photochemical quenching of chlorophyll a fluorescence by oxidised plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts

Affiliations
Free article

Non-photochemical quenching of chlorophyll a fluorescence by oxidised plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts

Pierre Haldimann et al. Biochim Biophys Acta. .
Free article

Abstract

Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (Q(A)) of photosystem (PS) II. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 micros to 5 s). The about 20% lowering of the maximum fluorescence yield F(M), observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH(2) by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH(2) starts getting reoxidized by PS I activity. NAD(P)H-dependent restoration of F(M) was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl(2) that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of F(M). Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F(0) allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F(0) level (Q(0)) and to compare it with the fractional quenching at the F(M) level (Q(M)). The experimentally determined Q(0)/Q(M) ratios were found to be equal to the corresponding F(0)/F(M) ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources