The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry
- PMID: 15694766
- DOI: 10.1016/j.jasms.2004.10.006
The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry
Abstract
The influence of field strength on the separation of tryptic peptides by drift tube-based ion mobility-mass spectrometry is reported. Operating the ion mobility drift tube at elevated field strengths (expressed in V cm(-1) torr(-1)) reduces separation times and increases ion transmission efficiencies. Several accounts in the literature suggest that performing ion mobility separation at elevated field strength can change the selectivity of ion separation. To evaluate the field strength dependant selectivity of ion mobility separation, we examined a data set of 65 singly charged tryptic peptide ion signals (mass range 500-2500 m/z) at six different field strengths and four different drift gas compositions (He, N2, Ar, and CH4). Our results clearly illustrate that changing the field strength from low field (15 V cm(-1) torr(-1)) to high field (66 V cm(-1) torr(-1)) does not significantly alter the selectivity or peak capacity of IM-MS. The implications of these results are discussed in the context of separation methodologies that rely on the field strength dependence of ion mobility for separation selectivity, e.g., high-field asymmetric ion mobility spectrometry (FAIMS).
Similar articles
-
Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides.J Mass Spectrom. 2004 Apr;39(4):361-7. doi: 10.1002/jms.592. J Mass Spectrom. 2004. PMID: 15103649
-
Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations.Analyst. 2015 Oct 21;140(20):6955-63. doi: 10.1039/c5an00897b. Analyst. 2015. PMID: 26140287 Free PMC article.
-
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis.Anal Chem. 2010 Dec 1;82(23):9827-34. doi: 10.1021/ac102125u. Epub 2010 Nov 4. Anal Chem. 2010. PMID: 21049936
-
Ion mobility-mass spectrometry.J Mass Spectrom. 2008 Jan;43(1):1-22. doi: 10.1002/jms.1383. J Mass Spectrom. 2008. PMID: 18200615 Review.
-
Ion mobility mass spectrometry for peptide analysis.Methods. 2011 Aug;54(4):454-61. doi: 10.1016/j.ymeth.2011.05.004. Epub 2011 Jun 6. Methods. 2011. PMID: 21669288 Review.
Cited by
-
Factors that influence helical preferences for singly charged gas-phase peptide ions: the effects of multiple potential charge-carrying sites.J Phys Chem B. 2010 Jan 21;114(2):809-16. doi: 10.1021/jp9105103. J Phys Chem B. 2010. PMID: 20000372 Free PMC article.
-
Ion dynamics in a trapped ion mobility spectrometer.Analyst. 2014 Apr 21;139(8):1913-21. doi: 10.1039/c3an02174b. Analyst. 2014. PMID: 24571000 Free PMC article.
-
To What Extent is FAIMS Beneficial in the Analysis of Proteins?J Am Soc Mass Spectrom. 2016 Apr;27(4):566-77. doi: 10.1007/s13361-015-1326-4. Epub 2016 Feb 2. J Am Soc Mass Spectrom. 2016. PMID: 26843211 Free PMC article.
-
Optimum waveforms for differential ion mobility spectrometry (FAIMS).J Am Soc Mass Spectrom. 2008 Sep;19(9):1286-95. doi: 10.1016/j.jasms.2008.05.008. Epub 2008 May 16. J Am Soc Mass Spectrom. 2008. PMID: 18585054 Free PMC article.
-
A novel approach to collision-induced dissociation (CID) for ion mobility-mass spectrometry experiments.J Am Soc Mass Spectrom. 2009 Jun;20(6):907-14. doi: 10.1016/j.jasms.2008.11.026. Epub 2008 Dec 9. J Am Soc Mass Spectrom. 2009. PMID: 19135385
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials