Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;34(2):178-84.
doi: 10.1016/j.ijom.2004.06.005.

The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats

Affiliations

The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats

R V Silva et al. Int J Oral Maxillofac Surg. 2005 Mar.

Abstract

Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The objective of this study was to evaluate the repair of bone defects by autogenous cancellous bone grafts or porous bioceramic discs of hydroxyapatite/phosphate cement mixture. Two 5-mm diameter defects were made in the skulls of rats and filled with the bioceramic material or cancellous bone. The rats were sacrificed 2, 4, 8 and 24 weeks after surgery and tissue samples were analyzed by radiography and histology. By the 24th week, the defects filled with autogenous cancellous bone grafts or bioceramic material showed similar volumes of bone tissue within the defect. However, defects treated with bioceramic material were almost completely closed as a result of the joining of ceramic fragments and the neoformed bone tissue, while those filled with autogenous grafts showed several areas filled with connective tissue. These results indicated that the osteointegration of bioceramic fragments allowed the reconstruction of parietal bone defects without the need for a bone graft.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources