Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;44(6):1932-40.
doi: 10.1021/bi048105s.

Interstrand cross-links: a new type of gamma-ray damage in bromodeoxyuridine-substituted DNA

Affiliations

Interstrand cross-links: a new type of gamma-ray damage in bromodeoxyuridine-substituted DNA

Sylvain Cecchini et al. Biochemistry. .

Abstract

Interstrand cross-links (ICL) represent one of the most toxic types of DNA damage for dividing cells. They are induced both by natural products (e.g., psoralens + UVA) and by several chemical agents, some of which are used in chemotherapy (e.g., carboplatin and mitomycin C). Although repair mechanisms exist for interstrand cross-links, these lesions can induce mutations, chromosomal rearrangements, and cell death. Here, we report, for the first time, the formation of ICL by gamma-rays in brominated DNA. It is well established that the radiosensitization properties of bromodeoxyuridine (BrdUrd) result primarily from the electrophilic nature of the bromine, making it a good leaving group and leading to the irreversible formation of a uridinyl radical (dUrd(*)) or uridinyl anion (dUrd-) upon addition of an electron. We observe that the radiolytic loss of the bromine atom is greatly suppressed in double-stranded compared to single-stranded DNA. We have used a model DNA containing a bulge, formed by five mismatched bases, and have observed a linear dose-response for the formation of strand breaks on the single-stranded regions of both the brominated strand and the opposite nonbrominated strand. Surprisingly, we have observed the formation of interstrand cross-links exclusively in the mismatched region. Thus, we propose that the radiosensitization effects of bromodeoxyuridine in vivo will almost certainly be limited to single strand regions such as found in transcription bubbles, replication forks, mismatched DNA, and possibly the loop region of telomeres. Our results suggest that interstrand cross-links may contribute to the radiosensitization effects of BrdUrd. These findings may have profound implications for the clinical use of bromodeoxyuridine as a radiosensitizer, as well as for the development of targeted radiosensitizers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources