Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;44(6):2080-7.
doi: 10.1021/bi047710s.

Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes

Affiliations

Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes

Michelle Olsher et al. Biochemistry. .

Abstract

We developed a new fluorescence assay for sterol oxidation and used it to study the relationship between free radical-induced sterol oxidation and membrane sterol lateral organization. This assay used dehydroergosterol (DHE) as both a membrane probe and a membrane component. Sterol oxidation was induced by a free radical generator, AAPH (2,2'-azobis(2-amidinopropane)dihydrochloride). Using this new assay, we found that, in unilamellar vesicles composed of DHE and 1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC), the initial rate of DHE oxidation induced by AAPH changed with membrane sterol content in an alternating manner, exhibiting a local maximum at 20.3, 22.2, 25.0, 32.3, and 40.0 mol % DHE. These mole fractions correspond to the critical sterol mole fractions C(r) predicted for maximal sterol superlattice formation. In three-component bilayers composed of POPC, cholesterol, and DHE (fixed at 1 and 5 mol %), the initial rate of AAPH-induced DHE oxidation exhibited a biphasic change whenever the total sterol mole fraction, irrespective of the DHE content, was near C(r), indicating that the correlation between sterol oxidation and sterol superlattice formation revealed in this study is not an artifact due to the use of the fluorescent cholesterol analogue DHE. The alternating variation of AAPH-induced sterol oxidation with sterol content also appeared in multicomponent unilamellar vesicles containing bovine brain sphingomyelins (bbSPM), POPC, and DHE. The present work and our previous study on cholesterol oxidase-induced sterol oxidation [Wang et al. (2004) Biochemistry 43, 2159-2166] suggest that sterol oxidation in general, either by reactive oxygen species or by enzymes, may be regulated by the extent of sterol superlattice in the membrane and thus regulated by the membrane sterol content in a fine-tuning manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources