Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb 15;21(4):1475-80.
doi: 10.1021/la0478090.

Adsorption of xanthene dyes by lysozyme crystals

Affiliations

Adsorption of xanthene dyes by lysozyme crystals

Aleksandar Cvetkovic et al. Langmuir. .

Abstract

Adsorption characteristics of cross-linked lysozyme crystals of different morphologies (tetragonal, orthorhombic, triclinic and monoclinic) were examined using four anionic dyes (fluorescein, eosin, erythrosin, and rose bengal), one zwitterionic dye (rhodamine B), and one cationic dye (rhodamine 6G). The adsorption isotherms were of the Langmuir type for all examined systems with the exception of rhodamine B adsorption by monoclinic crystals. The weakest adsorption was observed for the cationic dye, rhodamine B, whereas dianionic dyes, eosin, rose bengal, and erythrosin were strongly adsorbed on the protein surface. The adsorption capacities of the crystals for the dyes were found to depend on both charge and hydrophobicity of the dye, reflecting the heterogeneous character of the lysozyme pore surface. The adsorption affinity of the crystals for the dyes was a function of the dyes' hydrophobicity. Furthermore, the crystal morphology was identified as an additional factor determining capacity and affinity for dye adsorption. Differences between crystals prepared in the presence of the same precipitant were lower than between morphologies prepared with different precipitants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources