Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Apr;41(4):671-6.

Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism

Affiliations
  • PMID: 1569921
Comparative Study

Comparison of the effects of mizoribine with those of azathioprine, 6-mercaptopurine, and mycophenolic acid on T lymphocyte proliferation and purine ribonucleotide metabolism

J S Dayton et al. Mol Pharmacol. 1992 Apr.

Abstract

The immunosuppressive drug mizoribine has been demonstrated to inhibit T lymphocyte proliferation by depleting these cells of guanine ribonucleotides as a consequence of inhibiting the enzyme inosine monophosphate (IMP) dehydrogenase. Because the immunosuppressive agents azathioprine and 6-mercaptopurine (6MP) are both converted to the IMP analog 6-thio-IMP, we postulated that these drugs might inhibit T cell activation and/or proliferation by a similar mechanism. Incubation of isolated peripheral blood T cells with either mizoribine or the selective IMP dehydrogenase inhibitor mycophenolic acid caused a dose-dependent inhibition of T cell proliferation, which was reversible with the addition of 50 microM guanosine to replete guanine ribonucleotide pools. In contrast, guanosine exacerbated the inhibition of proliferation induced by azathioprine and restored proliferation at IC50 concentrations of 6MP by only 10%. Complete restoration of proliferation in the presence of 6MP, but not azathioprine, was achieved with the addition of adenine. The inhibitory effects of azathioprine, as well as those of mizoribine, 6MP, and mycophenolic acid, were identical in cells stimulated with antibody to the T cell receptor and in cells stimulated with phorbol ester and ionomycin. We conclude from these studies that mizoribine selectively inhibits guanine ribonucleotide formation in purified T cells, whereas the effect of 6MP appears to be more dependent on adenine ribonucleotide depletion. Azathioprine, on the other hand, inhibits proliferation by a mechanism independent of purine ribonucleotide depletion. None of these agents inhibits T cell proliferation by interfering with signal transduction mediated by the T cell receptor. Inhibition of guanine ribonucleotide biosynthesis appears to be a novel and perhaps more selective mechanism of inhibiting T cell proliferative responses after T cell activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources