Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 23;356(6371):722-5.
doi: 10.1038/356722a0.

Actin-dependent organelle movement in squid axoplasm

Affiliations

Actin-dependent organelle movement in squid axoplasm

S A Kuznetsov et al. Nature. .

Abstract

Studies of organelle movement in axoplasm extruded from the squid giant axon have led to the basic discoveries of microtubule-dependent organelle motility and the characterization of the microtubule-based motor proteins kinesin and cytoplasmic dynein. Rapid organelle movement in higher animal cells, especially in neurons, is considered to be microtubule-based. The role of actin filaments, which are also abundant in axonal cytoplasm, has remained unclear. The inhibition of organelle movement in axoplasm by actin-binding proteins such as DNase I, gelsolin and synapsin I has been attributed to their ability to disorganize the microtubule domains where most of the actin-filaments are located. Here we provide evidence of a new type of organelle movement in squid axoplasm which is independent of both microtubules and microtubule-based motors. This movement is ATP-dependent, unidirectional, actin-dependent, and probably generated by a myosin-like motor. These results demonstrate that an actomyosin-like mechanism can be directly involved in the generation of rapid organelle transport in nerve cells.

PubMed Disclaimer

Publication types

LinkOut - more resources