Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005;19(5):647-53.
doi: 10.1002/rcm.1834.

Rapid determination of acetone in human blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace liquid-phase microextraction and gas chromatography/mass spectrometry

Affiliations
Comparative Study

Rapid determination of acetone in human blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace liquid-phase microextraction and gas chromatography/mass spectrometry

Chunhui Deng et al. Rapid Commun Mass Spectrom. 2005.

Abstract

In the current work, a simple, rapid, accurate and inexpensive method was developed for the determination of acetone in human blood. The proposed method is based on derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA), followed by headspace liquid-phase microextraction (HS-LPME) and gas chromatography/mass spectrometry (GC/MS). In the present method, acetone in blood samples was derivatized with PFBHA and acetone oxime formed in several seconds. The formed oxime was enriched by HS-LPME using the organic solvent film (OSF) formed in a microsyringe barrel as extraction interface. Finally, the enriched oxime was analyzed by GC/MS in electron ionization (EI) mode. HS-LPME parameters including solvent, syringe plunger withdrawal rate, sampling volume, and extraction cycle were optimized and the method reproducibility, linearity, recovery and detection limit were studied. The proposed method was applied to determination of acetone in diabetes blood and normal blood. It has been shown that derivatization with HS-LPME and GC/MS is an alternative method for determination of the diabetes biomarker, acetone, in blood samples.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources