Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 15;105(12):4685-92.
doi: 10.1182/blood-2005-01-0191. Epub 2005 Feb 8.

Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism

Affiliations
Free article

Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism

Huazhang An et al. Blood. .
Free article

Abstract

Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) plays important roles in negatively regulating the activation of immune cells primarily via the phosphoinositide 3-kinase (PI-3K) pathway by catalyzing the PI-3K product PtdIns-3,4,5P3 (phosphatidylinositol-3,4,5-triphosphate) into PtdIns-3,4P2. However, the role of SHIP1 in Toll-like receptor 4 (TLR4)-mediated lipopolysaccharide (LPS) response remains unclear. Here we demonstrate that SHIP1 negatively regulates LPS-induced inflammatory response via both phosphatase activity-dependent and -independent mechanisms in macrophages. SHIP1 becomes tyrosine phosphorylated and up-regulated upon LPS stimulation in RAW264.7 macrophages. SHIP1-specific RNA-interfering and SHIP1 overexpression experiments demonstrate that SHIP1 inhibits LPS-induced tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) production by negatively regulating the LPS-induced combination between TLR4 and myeloid differentiation factor 88 (MyD88); activation of Ras (p21(ras) protein), PI-3K, extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun NH2-terminal kinase (JNK); and degradation of IkappaB-alpha. SHIP1 also significantly inhibits LPS-induced mitogen-activated protein kinase (MAPK) activation in TLR4-reconstitited COS7 cells. Although SHIP1-mediated inhibition of PI-3K is dependent on its phosphatase activity, phosphatase activity-disrupted mutant SHIP1 remains inhibitory to LPS-induced TNF-alpha production. Neither disrupting phosphatase activity nor using the PI-3K pathway inhibitor LY294002 or wortmannin could significantly block SHIP1-mediated inhibition of LPS-induced ERK1/2, p38, and JNK activation and TNF-alpha production, demonstrating that SHIP1 inhibits LPS-induced activation of MAPKs and cytokine production primarily by a phosphatase activity- and PI-3K-independent mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances