Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;235(1):133-41.
doi: 10.1148/radiol.2351020895. Epub 2005 Feb 9.

CT of the normal temporal bone: comparison of multi- and single-detector row CT

Affiliations
Comparative Study

CT of the normal temporal bone: comparison of multi- and single-detector row CT

Lorenz Jäger et al. Radiology. 2005 Apr.

Abstract

Purpose: To evaluate multi- and single-detector row computed tomographic (CT) depiction of anatomic landmarks of temporal bone.

Materials and methods: Institutional review board approval and written informed consent were obtained. In 50 temporal bones, transverse and coronal single-detector row CT images were compared with transverse and reformatted coronal multi-detector row CT images obtained of additional 50 temporal bones. Two radiologists evaluated images. Visibility of 50 landmarks was scored with a five-point quality rating scale. Fisher exact test, kappa statistics, and Mann-Whitney U test were used to evaluate imaging technique and landmark visibility.

Results: In delineating landmarks, total interobserver agreement was higher (P < .001) for transverse multi- than for single-detector row CT images. In 60% of landmarks, interobserver agreement was higher (P < .001) for transverse multi- than for single-detector row CT images. In 20% of landmarks, there was no difference, and in another 20% of landmarks, interobserver agreement was higher (P < .01) for single-detector row CT. Total interobserver agreement was higher (P < .01) for coronal multi-detector row reformations than for coronal single-detector row images. In 58% of landmarks, interobserver agreement was higher (P < .001) for coronal multi-detector row reformations than for coronal single-detector row images, while there was no difference in 8%. In 34% of landmarks, interobserver agreement was higher (P < .001) for coronal single-detector row images. Frequency of detected landmarks was higher for transverse (82%) and coronal (88%) multi-detector row images than for corresponding single-detector row images. In 72% of landmarks, transverse multi-detector row images were (P < .05) superior to corresponding transverse single-detector row images in landmark delineation. In 56% of landmarks, reformatted coronal multi-detector row images were (P < .05) superior to coronal single-detector row images in landmark delineation.

Conclusion: Multi-detector row CT images, including reformations, better delineate temporal bone anatomy than do single-detector row CT images.

PubMed Disclaimer

Publication types