Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 15;280(15):14645-55.
doi: 10.1074/jbc.M500600200. Epub 2005 Feb 10.

The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-alpha class of animal prolyl 4-hydroxylases

Affiliations
Free article

The Skp1 prolyl hydroxylase from Dictyostelium is related to the hypoxia-inducible factor-alpha class of animal prolyl 4-hydroxylases

Hanke van der Wel et al. J Biol Chem. .
Free article

Abstract

Skp1 is a cytoplasmic and nuclear protein of eukaryotes best known as an adaptor in SCF ubiquitin-protein isopeptide ligases. In Dictyostelium, Skp1 is subject to 4-hydroxylation at Pro(143) and subsequent O-glycosylation by alpha-linked GlcNAc and other sugars. Soluble cytosolic extracts have Skp1 prolyl 4-hydroxylase (P4H) activity, which can be measured based on hydroxylation-dependent transfer of [(3)H]GlcNAc to recombinant Skp1 by recombinant (Skp1-protein)-hydroxyproline alpha-N-acetyl-d-glucosaminyltransferase. The Dictyostelium Skp1 P4H gene (phyA) was predicted using a bioinformatics approach, and the expected enzyme activity was confirmed by expression of phyA cDNA in Escherichia coli. The purified recombinant enzyme (P4H1) was dependent on physiological concentrations of O(2), alpha-ketoglutarate, and ascorbate and was inhibited by CoCl(2), 3,4-dihydroxybenzoate, and 3,4-dihydroxyphenyl acetate, as observed for known animal cytoplasmic P4Hs of the hypoxia-inducible factor-alpha (HIFalpha) class. Overexpression of phyA cDNA in Dictyostelium yielded increased enzyme activity in a soluble cytosolic extract. Disruption of the phyA locus by homologous recombination resulted in loss of detectable activity in extracts and blocked hydroxylation-dependent glycosylation of Skp1 based on molecular weight analysis by SDS-PAGE, demonstrating a requirement for P4H1 in vivo. The sequence and functional similarities of P4H1 to animal HIFalpha-type P4Hs suggest that hydroxylation of Skp1 may, like that of animal HIFalpha, be regulated by availability of O(2), alpha-ketoglutarate, and ascorbate, which might exert novel control over Skp1 glycosylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data