Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004;15(2):31-41.

Comprehensive identification of "druggable" protein ligand binding sites

Affiliations
  • PMID: 15706489
Comparative Study

Comprehensive identification of "druggable" protein ligand binding sites

Jianghong An et al. Genome Inform. 2004.

Abstract

We have developed a new computational algorithm for de novo identification of protein-ligand binding pockets and performed a large-scale validation of the algorithm on two systematically collected datasets from all crystallographic structures in the Protein Data Bank (PDB). This algorithm, called DrugSite, takes a three-dimensional protein structure as input and returns the location, volume and shape of the putative small molecule binding sites by using a physical potential and without any knowledge about a potential ligand molecule. We validated this method using 17,126 binding sites from complexes and apo-structures from the PDB. Out of 5,616 binding sites from protein-ligand complexes, 98.8% were identified by predicted pockets. In proteins having known binding sites, 80.9% were predicted by the largest predicted pocket and 92.7% by the first two. The average ratio of predicted contact area to the total surface area of the protein was 4.7% for the predicted pockets. In only 1.2% of the cases, no "pocket density" was found at the ligand location. Further, 98.6% of 11,510 binding sites collected from apo-structures were predicted. The algorithm is accurate and fast enough to predict protein-ligand binding sites of uncharacterized protein structures, suggest new allosteric druggable pockets, evaluate druggability of protein-protein interfaces and prioritize molecular targets by druggability. Furthermore, the known and the predicted binding pockets for the proteome of a particular organism can be clustered into a "pocketome", that can be used for rapid evaluation of possible binding partners of a given chemical compound.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources