Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 8;11(8):2327-34.
doi: 10.1002/chem.200401082.

Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system

Affiliations

Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system

Joseph S M Samec et al. Chemistry. .

Abstract

Efficient aerobic oxidation of amines was developed by the use of a biomimetic coupled catalytic system involving a ruthenium-induced dehydrogenation. The principle for this aerobic oxidation is that the electron transfer from the amine to molecular oxygen occurs stepwise via coupled redox systems and this leads to a low-energy electron transfer. A substrate-selective ruthenium catalyst dehydrogenates the amine and the hydrogen atoms abstracted are transported to an electron-rich quinone (2a). The hydroquinone thus formed is subsequently reoxidized by air with the aid of an oxygen-activating [Co(salen)]-type complex (27). The reaction can be used for the preparation of ketimines and aldimines in good to high yields from the appropriate corresponding amines. The reaction proceeds with high selectivity, and the catalytic system tolerates air without being deactivated. The rate of the dehydrogenation was studied by using quinone 2a as the terminal oxidant. A catalytic cycle in which the amine promotes the dissociation of the dimeric catalyst 1 is presented.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources