Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;35(2):107-25.
doi: 10.2165/00007256-200535020-00002.

Creatine supplementation and exercise performance: recent findings

Affiliations
Review

Creatine supplementation and exercise performance: recent findings

Michael G Bemben et al. Sports Med. 2005.

Abstract

Creatine monohydrate (Cr) is perhaps one of the most widely used supplements taken in an attempt to improve athletic performance. The aim of this review is to update, summarise and evaluate the findings associated with Cr ingestion and sport and exercise performance with the most recent research available. Because of the large volume of scientific literature dealing with Cr supplementation and the recent efforts to delineate sport-specific effects, this paper focuses on research articles that have been published since 1999.Cr is produced endogenously by the liver or ingested from exogenous sources such as meat and fish. Almost all the Cr in the body is located in skeletal muscle in either the free (Cr: approximately 40%) or phosphorylated (PCr: approximately 60%) form and represents an average Cr pool of about 120-140 g for an average 70 kg person. It is hypothesised that Cr can act though a number of possible mechanisms as a potential ergogenic aid but it appears to be most effective for activities that involve repeated short bouts of high-intensity physical activity. Additionally, investigators have studied a number of different Cr loading programmes; the most common programme involves an initial loading phase of 20 g/day for 5-7 days, followed by a maintenance phase of 3-5 g/day for differing periods of time (1 week to 6 months). When maximal force or strength (dynamic or isotonic contractions) is the outcome measure following Cr ingestion, it generally appears that Cr does significantly impact force production regardless of sport, sex or age. The evidence is much more equivocal when investigating isokinetic force production and little evidence exists to support the use of Cr for isometric muscular performance. There is little benefit from Cr ingestion for the prevention or suppression of muscle damage or soreness following muscular activity. When performance is assessed based on intensity and duration of the exercises, there is contradictory evidence relative to both continuous and intermittent endurance activities. However, activities that involve jumping, sprinting or cycling generally show improved sport performance following Cr ingestion. With these concepts in mind, the focus of this paper is to summarise the effectiveness of Cr on specific performance outcomes rather than on proposed mechanisms of action. The last brief section of this review deals with the potential adverse effects of Cr supplementation. There appears to be no strong scientific evidence to support any adverse effects but it should be noted that there have been no studies to date that address the issue of long-term Cr usage.

PubMed Disclaimer

References

    1. J Appl Physiol (1985). 1999 Mar;86(3):840-4 - PubMed
    1. Eur J Appl Physiol. 2001 Mar;84(3):238-43 - PubMed
    1. J Strength Cond Res. 2002 Feb;16(1):109-16 - PubMed
    1. Med Sci Sports Exerc. 2001 Aug;33(8):1304-10 - PubMed
    1. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):176-81 - PubMed

MeSH terms